
Author:

ORACLE SQL BASICS,
THE SELECT STATEMENT

ORACLE SQL FOUNDATION

Aliaksandr Chaika
Senior Software Engineer
Certified Oracle Database SQL Expert
Aliaksandr_Chaika@epam.com

MTN.BI.02

2012 © EPAM Systems, RD Dep. 1

Objectives

• SQL ANSI Standard
• Oracle Human Resources (HR) Sample Schema
• The SELECT Statement
• Joins
• Set Operations
• Pseudocolumns

2012 © EPAM Systems, RD Dep. 2

ANSI STANDARDS FOR SQL

2012 © EPAM Systems, RD Dep. 3

ANSI Standards for SQL

Year Standard Name (and Aliases) Oracle Database

1986 SQL-86 / SQL-87

1989 SQL-89 / FIPS 127-1

1992 SQL-92 / SQL2 / FIPS 127-2

1999 SQL:1999 / SQL3

2003 SQL:2003 Oracle 10g Release 1
Oracle 10g Release 2
Oracle 11g Release 1

2006 SQL:2006

2008 SQL:2008 Oracle 11g Release 2

2011 SQL:2011

2012 © EPAM Systems, RD Dep. 4

ANSI/ISO Standard Structure

2012 © EPAM Systems, RD Dep. 5

Standard Part Name Content

ISO/IEC 9075-1:2011 Part 1 Framework (SQL/Framework) Concepts

ISO/IEC 9075-2:2011 Part 2 Foundation (SQL/Foundation) Language
elements

ISO/IEC 9075-3:2008 Part 3 Call-Level Interface (SQL/CLI) Interfacing
components

ISO/IEC 9075-4:2011 Part 4 Persistent Stored Modules (SQL/PSM) Procedural
extensions

ISO/IEC 9075-9:2008 Part 9 Management of External Data
(SQL/MED)

Foreign-data and
Datalinks

ISO/IEC 9075-10:2008 Part 10 Object Language Bindings (SQL/OLB) SQLJ

ISO/IEC 9075-11:2011 Part 11 Information and Definition Schemas
(SQL/Schemata)

Self-describing
objects

ISO/IEC 9075-13:2008 Part 13 SQL Routines and Types Using the Java
Programming Language (SQL/JRT)

Using Java in the
database

ISO/IEC 9075-14:2011 Part 14 XML-Related Specifications (SQL/XML) Using XML

Core SQL Language Syntax and Semantic

ISO/IEC 9075-1:2008 Part 1: Framework (SQL/Framework)
Provides logical concepts.

ISO/IEC 9075-2:2008 Part 2: Foundation (SQL/Foundation)
Contains the most central elements of the language and
consists of both mandatory and optional features.

ISO/IEC 9075-11:2008 Part 11: Information and Definition
Schemas (SQL/Schemata)
Defines the Information Schema and Definition Schema,
providing a common set of tools to make SQL databases and
objects self-describing.

2012 © EPAM Systems, RD Dep. 6

 Core SQL:2008

ORACLE HUMAN RESOURCES
SAMPLE SCHEMA OVERVIEW

2012 © EPAM Systems, RD Dep. 7

2012 © EPAM Systems, RD Dep. 8

Oracle Sample Human Resources (HR) Schema

2012 © EPAM Systems, RD Dep. 9

Retrieving all data from Employees table

2012 © EPAM Systems, RD Dep. 10

Employees Table Properties

2012 © EPAM Systems, RD Dep. 11

Departments Table

2012 © EPAM Systems, RD Dep. 12

Jobs Table

2012 © EPAM Systems, RD Dep. 13

Job_history Table

2012 © EPAM Systems, RD Dep. 14

Locations Table

2012 © EPAM Systems, RD Dep. 15

Countries and Regions Tables

2012 © EPAM Systems, RD Dep. 16

Exploring data: Select Distinct Records

2012 © EPAM Systems, RD Dep. 17

Exploring data: Counting Records

2012 © EPAM Systems, RD Dep. 18

Exploring data: Using COUNT Function

2012 © EPAM Systems, RD Dep. 19

Using COUNT Function

THE SELECT STATEMENT

2012 © EPAM Systems, RD Dep. 20

Basic Language Elements

▪ Statements

▪ Queries

▪ Clauses

▪ Expressions

▪ Predicates

▪ Insignificant
whitespaces

2012 © EPAM Systems, RD Dep. 21

Statement

FROM clause

WHERE clause

GROUP BY clause

HAVING clause

ORDER BY clause

SELECT job_id, avg(salary)

FROM employees

WHERE salary > 10000

GROUP BY job_id

HAVING avg(salary) > 11000

ORDER BY 2 DESC;

SELECT emp.job_id, avg(emp.salary)
FROM employees emp
WHERE emp.salary > 10000
GROUP BY emp.job_id
HAVING avg(emp.salary) > 11000
ORDER BY avg(emp.salary) DESC;

Tables Aliases

2012 © EPAM Systems, RD Dep. 22

▪ Table aliases is optional
mechanism to make
queries easier to read,
understand and
maintain.

▪ Aliases should be
meaningful!

▪ Aliases can be used
with asterisk, like
SELECT emp.*

▪ Optional AS keyword
between table name
and its alias throws
error in Oracle
(non-standard
behavior).

SELECT
 emp.job_id AS "Group by job",
 avg(emp.salary) "Salary, AVG"
FROM employees "EMP"
WHERE "EMP".salary > 10000
GROUP BY emp.job_id
HAVING avg(emp.salary) > 11000
ORDER BY -"Salary, AVG";

Field Aliases

2012 © EPAM Systems, RD Dep. 23

Naming Rules:

▪ Must not exceed 30 characters.

▪ First character must be a letter

▪ The rest can be any
combination of letters,
numerals, dollar signs ($),
pound signs (#), and
underscores (_).

▪ Identifier enclosed by double
quotation marks (") can contain
any combination of legal
characters, including spaces but
excluding quotation marks.

▪ Identifiers are not case sensitive
except within double quotation
marks.

SELECT e.job_id AS "Group by job",
 avg(e.commission_pct) "Commission, AVG"
FROM employees e
WHERE "E".salary > 9000
GROUP BY e.job_id
--HAVING min(e.commission_pct) > 0
ORDER BY 2 DESC NULLS LAST;

ORDER BY clause (NULLs Ordering)

▪ ASC | DESC
Specify the ordering
sequence. ASC is the
default.

▪ NULLS FIRST |
NULLS LAST
Specify whether
returned rows
containing nulls
should appear first or
last in the ordering
sequence.

▪ NULLS LAST is the
default for ascending
order, and NULLS
FIRST is the default
for descending order.

2012 © EPAM Systems, RD Dep. 24

Oracle Query Block Structure and WHERE Clause

2012 © EPAM Systems, RD Dep. 25

SELECT Columns List

2012 © EPAM Systems, RD Dep. 26

Tables References (simplified FROM clause)

2012 © EPAM Systems, RD Dep. 27

GROUP BY and HAVING clauses, ORDER BY clause

2012 © EPAM Systems, RD Dep. 28

JOIN TABLES

2012 © EPAM Systems, RD Dep. 29

SQL Joins

2012 © EPAM Systems, RD Dep. 30

SQL Joins Classification

▪ Inner join

• Equi-join

› Natural join

▪ Outer joins

• Left outer join

• Right outer join

• Full outer join

▪ Cross join

▪ Self-join

2012 © EPAM Systems, RD Dep. 31

Qualified joins

SELECT emp.first_name, emp.last_name,
 emp.job_id, emp.salary, jb.*
FROM employees emp, jobs jb;

SELECT emp.first_name, emp.last_name,
 emp.job_id, emp.salary, jb.*
FROM employees emp CROSS JOIN jobs jb;

Simple Join Example (cross join Employees and Jobs)

2012 © EPAM Systems, RD Dep. 32

SELECT count(*) AS cnt
FROM employees emp, jobs jb;

SELECT count(*) AS cnt
FROM employees emp CROSS JOIN jobs jb;

SELECT
 (SELECT count(*) FROM employees emp)
 * (SELECT count(*) FROM jobs jb) cnt
FROM dual;

Prove Cross Join

2012 © EPAM Systems, RD Dep. 33

SELECT emp.first_name, emp.last_name,
 emp.job_id, emp.salary, jb.*
FROM employees emp, jobs jb
WHERE emp.job_id = jb.job_id;

SELECT emp.first_name, emp.last_name,
 emp.job_id, emp.salary, jb.*
FROM employees emp CROSS JOIN jobs jb
WHERE emp.job_id = jb.job_id;

Reducing Cartesian Product to get meaningful result

2012 © EPAM Systems, RD Dep. 34

Senseless syntax

Check Your Join (Using foreign keys)

2012 © EPAM Systems, RD Dep. 35

Check Your Join (Nullable fields)

DESCRIBE employees

Name Null Type
-------------- -------- ------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)

2012 © EPAM Systems, RD Dep. 36

DESC jobs

Name Null Type
---------- -------- ------------
JOB_ID NOT NULL VARCHAR2(10)
JOB_TITLE NOT NULL VARCHAR2(35)
MIN_SALARY NUMBER(6)
MAX_SALARY NUMBER(6)

Join Syntax

2012 © EPAM Systems, RD Dep. 37

Inner / Outer / Cross Joins Syntax

2012 © EPAM Systems, RD Dep. 38

SELECT emp.first_name, emp.last_name, emp.salary, jb.*
FROM employees emp, jobs jb
WHERE emp.job_id = jb.job_id;

SELECT emp.first_name, emp.last_name, emp.salary,
 job_id, jb.job_title, jb.min_salary, jb.max_salary
FROM employees emp NATURAL JOIN jobs jb;

SELECT emp.first_name, emp.last_name, emp.salary,
 job_id, jb.job_title, jb.min_salary, jb.max_salary
FROM employees emp JOIN jobs jb USING(job_id);

SELECT emp.first_name, emp.last_name, emp.salary, jb.*
FROM employees emp JOIN jobs jb ON emp.job_id=jb.job_id;

Inner Equi-joins

2012 © EPAM Systems, RD Dep. 39

Outer Equi-joins

2012 © EPAM Systems, RD Dep. 40

SELECT emp.first_name, emp.last_name, emp.salary, dept.department_name
FROM employees emp, departments dept
WHERE emp.department_id = dept.department_id(+)
ORDER BY dept.department_name NULLS FIRST;

SELECT emp.first_name, emp.last_name, emp.salary, dept.department_name
FROM employees emp NATURAL LEFT OUTER JOIN departments dept
ORDER BY dept.department_name NULLS FIRST;

SELECT emp.first_name, emp.last_name, emp.salary, dept.department_name
FROM employees emp LEFT OUTER JOIN departments dept USING (department_id)
ORDER BY dept.department_name NULLS FIRST;

SELECT emp.first_name, emp.last_name, emp.salary, dept.department_name
FROM employees emp LEFT OUTER JOIN departments dept
 ON (emp.department_id = dept.department_id)
ORDER BY dept.department_name NULLS FIRST;

Left Outer Equi-joins

2012 © EPAM Systems, RD Dep. 41

Old Oracle’s syntax

SELECT emp.first_name, emp.last_name,
 emp.salary, dept.department_name,
 department_id, manager_id
FROM employees emp NATURAL LEFT JOIN departments dept;

Typical Mistake with NATURAL JOIN

2012 © EPAM Systems, RD Dep. 42

SELECT emp.first_name, emp.last_name,
 emp.salary, dept.department_name,
 department_id, manager_id
FROM employees emp LEFT OUTER JOIN departments dept
 USING (department_id, manager_id); Do you really want this?

SELECT dept.department_name, max(emp.salary)
FROM employees emp, departments dept
WHERE emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp NATURAL RIGHT JOIN departments dept
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp RIGHT OUTER JOIN departments dept
 USING (department_id)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp RIGHT OUTER JOIN departments dept
 ON (emp.department_id = dept.department_id)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

Right Outer Equi-joins

2012 © EPAM Systems, RD Dep. 43

Do you really
want this?

Old Oracle’s syntax

SELECT dept.department_name, max(emp.salary)
FROM employees emp, departments dept
WHERE emp.department_id(+) = ept.department_id(+)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp NATURAL FULL JOIN departments dept
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp FULL OUTER JOIN departments dept
 USING (department_id)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp FULL OUTER JOIN departments dept
 ON (emp.department_id = dept.department_id)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

Full Outer Equi-joins

2012 © EPAM Systems, RD Dep. 44

ORA-01468: a predicate
may reference only one
outer-joined table

SELECT emp.first_name, emp.last_name, emp.salary,
 mng.first_name manager_first_name, mng.last_name manager_last_name
FROM employees emp LEFT JOIN employees mng
 ON emp.manager_id = mng.employee_id;

SELECT emp.first_name, emp.last_name, emp.salary,
 mng.first_name manager_first_name, mng.last_name manager_last_name
FROM employees emp, employees mng
WHERE emp.manager_id = mng.employee_id(+);

Self-join

2012 © EPAM Systems, RD Dep. 45

Complex Join Example

2012 © EPAM Systems, RD Dep. 46

Resulting dataset contains 123 rows:
• 107 employees
• 16 empty departments

SELECT dept.department_name "Dept",
 dept_mng.first_name || ' ' || dept_mng.last_name "Dept Manager",
 emp.first_name || ' ' || emp.last_name "Employee",
 emp_mng.first_name || ' ' || emp_mng.last_name "Emp Manager"
FROM departments dept
 LEFT OUTER JOIN employees dept_mng
 ON (dept.manager_id = dept_mng.employee_id)
 FULL OUTER JOIN employees emp
 ON (emp.department_id = dept.department_id)
 LEFT OUTER JOIN employees emp_mng
 ON (emp.manager_id=emp_mng.employee_id)
ORDER BY 1 NULLS FIRST, 2, 3, 4;

SET OPERATIONS

2012 © EPAM Systems, RD Dep. 47

Set Operations

UNION

2012 © EPAM Systems, RD Dep. 48

INTERSECT EXCEPT

Operation ANSI Standard Oracle

UNION UNION ALL UNION ALL

UNION DISTINCT UNION

INTERSECT INTERSECT ALL

INTERSECT DISTINCT INTERSECT

EXCEPT EXCEPT ALL

EXCEPT DISTINCT MINUS

Set Operations Syntax

2012 © EPAM Systems, RD Dep. 49

Always the last
section

SELECT dept.department_name,
max(emp.salary)
FROM employees emp
 FULL OUTER JOIN departments dept
 USING (department_id)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY dept.department_name NULLS FIRST;

SELECT dept.department_name,
 max(emp.salary)
FROM employees emp, departments dept
WHERE
 emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
UNION
SELECT dept.department_name, max(emp.salary)
FROM employees emp, departments dept
WHERE emp.department_id = dept.department_id(+)
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
ORDER BY 1 NULLS FIRST;

SELECT dept.department_name, max(emp.salary)
FROM employees emp, departments dept
WHERE emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 0
UNION
SELECT NULL, max(salary)
FROM employees emp
WHERE department_id IS NULL
ORDER BY 1 NULLS FIRST;

Union Operation

2012 © EPAM Systems, RD Dep. 50

(
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp FULL OUTER JOIN departments dept
 USING (department_id)
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
)
MINUS
(
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp, departments dept
 WHERE emp.department_id(+) = dept.department_id
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
 UNION
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp, departments dept
 WHERE emp.department_id = dept.department_id(+)
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
);

Minus Operation (Check datasets equivalence)

2012 © EPAM Systems, RD Dep. 51

Full Outer Join

Right Outer Join
Union
Left Outer join

(
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp, departments dept
 WHERE emp.department_id(+) = dept.department_id
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
 UNION
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp, departments dept
 WHERE emp.department_id = dept.department_id(+)
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
)
MINUS
(
 SELECT dept.department_name, max(emp.salary)
 FROM employees emp FULL OUTER JOIN departments dept
 USING (department_id)
 GROUP BY dept.department_name
 HAVING count(emp.employee_id) > 0
);

Minus Operation (Check datasets equivalence)

2012 © EPAM Systems, RD Dep. 52

Right Outer Join
Union
Left Outer join

Full Outer Join

SELECT dept.department_name
FROM employees emp, departments dept
WHERE emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 3
INTERSECT
SELECT dept.department_name
FROM employees emp, departments dept
WHERE emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING MAX(emp.salary) > 9000;

SELECT dept.department_name
FROM employees emp, departments dept
WHERE emp.department_id(+) = dept.department_id
GROUP BY dept.department_name
HAVING count(emp.employee_id) > 3 and max(emp.salary) > 9000;

Intersect Operation

2012 © EPAM Systems, RD Dep. 53

SELECT 'Dept' AS "Dept/Job",
 dept.department_name "Name",
 avg(emp.salary) "Avg Salary"
FROM employees emp
 JOIN departments dept
 USING (department_id)
GROUP BY department_id, dept.department_name
HAVING avg(emp.salary) > 9000
UNION ALL
SELECT 'Job',
 jb.job_title,
 avg(emp.salary)
FROM employees emp
 JOIN jobs jb
 USING (job_id)
GROUP BY job_id, jb.job_title
HAVING avg(emp.salary) > 9000
ORDER BY 1, 2, 3;

UNION ALL Operation

2012 © EPAM Systems, RD Dep. 54

PSEUDOCOLUMNS

2012 © EPAM Systems, RD Dep. 55

Pseudocolumns

Oracle Pseudocolumns Overview

▪ Hierarchical Query Pseudocolumns

▪ Sequence Pseudocolumns

▪ Version Query Pseudocolumns

▪ COLUMN_VALUE Pseudocolumn

▪ OBJECT_ID Pseudocolumn

▪ OBJECT_VALUE Pseudocolumn

▪ ORA_ROWSCN Pseudocolumn

▪ ROWID Pseudocolumn

▪ ROWNUM Pseudocolumn

▪ XMLDATA Pseudocolumn

2012 © EPAM Systems, RD Dep. 56

ROWNUM Pseudocolumn

2012 © EPAM Systems, RD Dep. 57

SELECT ROWNUM, employee_id,
 first_name, last_name
FROM employees;

SELECT ROWNUM, employee_id,
 first_name, last_name
FROM employees
ORDER BY first_name, last_name;

Isn’t good idea if we need
employee number into the list

SELECT ROWNUM, first_name,
 last_name,
 salary
FROM (
 SELECT first_name,
 last_name,
 salary
 FROM employees
 ORDER BY salary DESC
);

ROWNUM Pseudocolumn

2012 © EPAM Systems, RD Dep. 58

SELECT ROWNUM,
 first_name,
 last_name,
 salary
FROM employees
ORDER BY salary DESC;

SELECT ROWNUM, first_name, last_name, salary
FROM (
 SELECT first_name, last_name, salary
 FROM employees
 ORDER BY salary DESC
)
WHERE ROWNUM <= 5;

SELECT ROWNUM, first_name, last_name, salary
FROM (
 SELECT first_name, last_name, salary
 FROM employees
 ORDER BY salary DESC
)
WHERE ROWNUM BETWEEN 3 AND 5;

Limiting result set of SELECT query

2012 © EPAM Systems, RD Dep. 59

ROWID Pseudocolumn

For each row in the database, the ROWID pseudocolumn returns the
address of the row.

Oracle Database rowid values contain information necessary to locate a
row:

▪ The data object number of the object

▪ The data block in the data file in which the row resides

▪ The position of the row in the data block (first row is 0)

▪ The data file in which the row resides (first file is 1). The file number is
relative to the tablespace.

Rowid values have several important uses:

▪ They are the fastest way to access a single row.

▪ They can show you how the rows in a table are stored.

▪ They are unique identifiers for rows in a table.
2012 © EPAM Systems, RD Dep. 60

ROWID Pseudocolumn

2012 © EPAM Systems, RD Dep. 61

SELECT first_name,
 last_name,
 ROWID,
 DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) FILE_NO,
 DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) BLOCK_NO,
 DBMS_ROWID.ROWID_ROW_NUMBER(ROWID) ROW_NO
FROM employees
ORDER BY 4, 5, 6;

Data file Block Row

Locate Datafile where Table is stored

2012 © EPAM Systems, RD Dep. 62

CONNECT SYSTEM

SELECT DISTINCT df.FILE_NAME
FROM hr.employees emp
 JOIN dba_data_files df
 ON (DBMS_ROWID.ROWID_RELATIVE_FNO(emp.ROWID)=df.RELATIVE_FNO)
ORDER BY 1;

DISCONNECT

How many blocks table actually occupies

2012 © EPAM Systems, RD Dep. 63

SELECT
 COUNT(DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)) BLOCKS_NUM
FROM employees;

CONNECT SYSTEM/oracle
SELECT df.file_name, ts.tablespace_name, ts.block_size,
 COUNT(DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(emp.ROWID)) BLOCKS_NUM,
 ts.block_size
 * COUNT(DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(emp.ROWID)) TBL_SIZE
FROM hr.employees emp
 JOIN dba_data_files df
 ON (DBMS_ROWID.ROWID_RELATIVE_FNO(emp.ROWID) = df.RELATIVE_FNO)
 JOIN dba_tablespaces ts
 ON (df.tablespace_name = ts.tablespace_name)
GROUP BY df.file_name, ts.tablespace_name, ts.block_size;
DISCONNECT

Author:

Questions & Answers

ORACLE SQL

Aliaksandr Chaika
Senior Software Engineer
Certified Oracle Database SQL Expert
Aliaksandr_Chaika@epam.com

MTN.BI.02

2012 © EPAM Systems, RD Dep. 64

