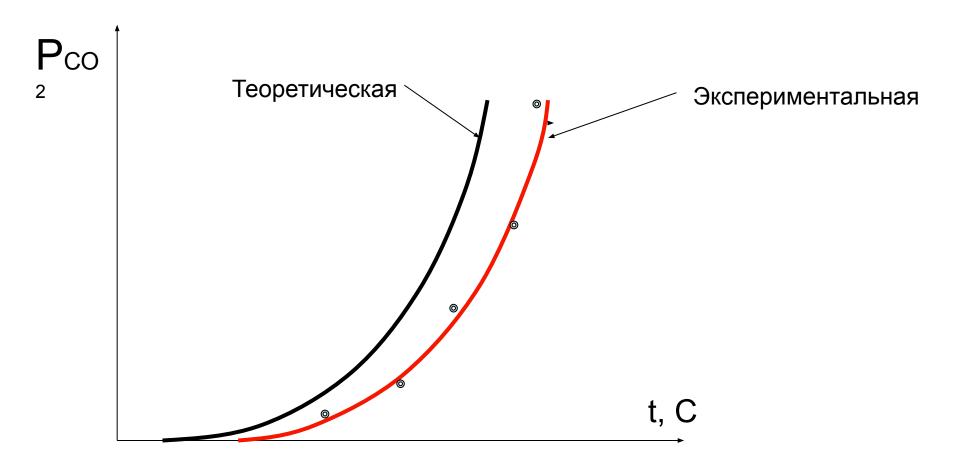
ИЗУЧЕНИЕ УПРУГОСТИ ДИССОЦИАЦИИ КАРБОНАТА КАЛЬЦИЯ

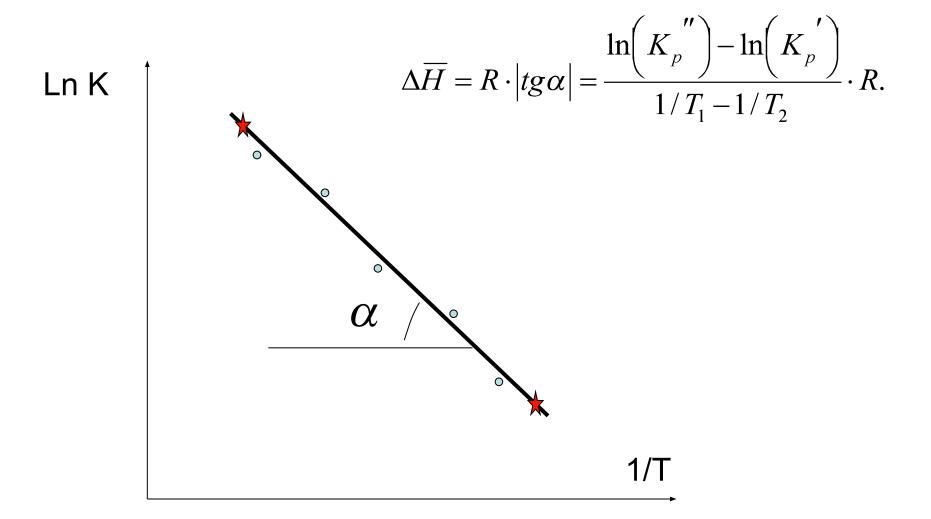
Цель работы: изучение температурной зависимости упругости диссоциации карбо-ната кальция и определение теплового эффекта реакции диссоциации **CaCO**₃.

$CaCO_{3_{TB}} = CaO_{TB} + CO_{2}$

$$K_p = \frac{a_{\text{CaO}} \cdot a_{\text{CO}_2}}{a_{\text{CaCO}_3}} = P_{\text{CO}_2},$$

$$\left(\frac{\partial \ln K_p}{\partial T}\right)_p = \frac{d \ln(p_{\text{CO}_2})_{pash}}{dT} = \frac{\Delta H^0}{RT^2}$$





ВАРИАНТЫ

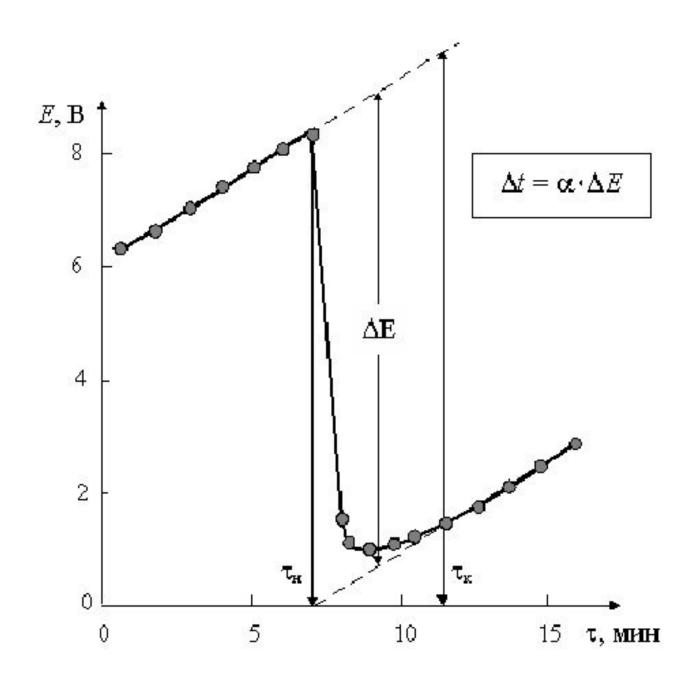
t, C	Р со2, атм	2	3	4
600	0,004	0,003	0,004	0,053
640	0,010	0,008	0,011	0,059
680	0,026	0,021	0,028	0,073
720	0,061	0,050	0,067	0,106
760	0,135	0,110	0,147	0,173
800	0,280	0,229	0,306	0,305
840	0,551	0,450	0,601	0,551
880	1,029	0,842	1,123	0,986

 P_{CO_2}

Вопросы для самоконтроля

- 1. Что называется упругостью диссоциации карбоната?
- 2. Докажите, используя правило фаз Гиббса, что упругость диссоциации CaCO3 есть однозначная функция температуры?
- 3. Что произойдет с термодинамической системой, если произвольно изменять большее число параметров, чем позволяет правило фаз Гиббса?
- 4. Как температура влияет на упругость диссоциации?
- 5. Как определить направление процесса диссоциации карбоната, зная температуру и фактическое давление CO₂ в системе?
- 6. Как дисперсность твердых фаз влияет на упругость диссоциации?
- 7. В чем состоит суть статического метода определения упругости диссоциации?

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ РАСТВОРЕНИЯ СОЛИ В ВОДЕ


Цель работы: определение интегральной теплоты растворения нескольких солей с одинаковым катионом или анионом, что позволяет выяснить влияние природы второго иона на величину ΔH .

3. Установить термодатчик 4 и включив тумблер "Сеть"

t, мин			
	КЈ	KCl	NaCl
1	0,64	0,54	0,33
2	0,68	0,57	0,35
3	0,72	0,61	0,37
4	0,75	0,65	0,39
5	0,79	0,69	0,41
5,5	0,46	0,44	0,31
6	0,37	0,38	0,28
6,5	0,32	0,31	0,29
7	0,3	0,28	0,3
7,5	0,33	0,29	0,32
8	0,38	0,32	0,35
9	0,44	0,37	0,39
10	0,49	0,42	0,43
11	0,55	0,51	0,47
12	0,62	0,58	0,52

		т онс р		
t, мин		ТермоЭДС, В		
	KJ	KC1	NaCl	NH4Cl
1	0,64	0,54	0,33	0,73
2	0,68	0,57	0,35	0,76
3	0,72	0,61	0,37	0,79
4	0,75	0,65	0,39	0,81
5	0,79	0,69	0,41	0,84
5,5	0,46	0,44	0,31	0,86
6	0,37	0,35	0,28	0,87
6,5	0,32	0,3	0,29	0,68
7	0,3	0,28	0,3	0,57
7,5	0,33	0,29	0,32	0,54
8	0,38	0,32	0,35	0,53
9	0,44	0,38	0,39	0,57
10	0,49	0,44	0,43	0,62
11	0,55	0,51	0,47	0,68
12	0,62	0,58	0,52	0,73

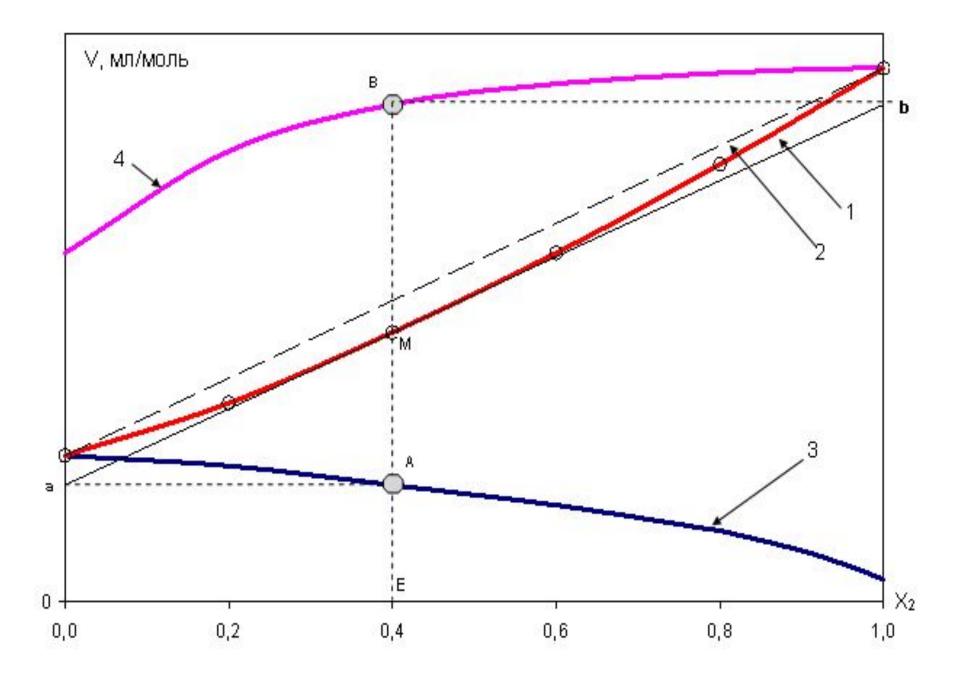
• Вопросы для самоконтроля

- Что называют интегральной и дифференциальной теплотами растворения?
- Как связана прочность кристаллической решетки соли и теплота ее растворения?
- Какое влияние оказывает природа катиона или аниона на теплоту растворения соли?
- Известно, что при растворении двух солей с общим катионом для соли с более слабым анионом теплота растворения выше. Что можно сказать о влиянии природы аниона на соотношение теплот плавления этих солей и смешения их с водой?
- В чем суть калориметрического определения теплоты растворения? Как определить величину, необходимую для расчета теплоты?

ОПРЕДЕЛЕНИЕ ПАРЦИАЛЬНО-МОЛЯРНЫХ ОБЪЕМОВ КОМПОНЕНТОВ БИНАРНОГО РАСТВОРА

Цель работы: изучить зависимость парциальномолярных объемов компонентов раствора "вода - этиловый спирт" от химического состава.

$$V_m = x_1 \cdot \overline{V_1} + x_2 \cdot \overline{V_2}$$


$$V_m = \frac{M_{\rm cp}}{\rho} = \frac{M_1 \cdot x_1 + M_2 \cdot x_2}{\rho},$$

$$\rho = \rho_{\rm B} + (\rho_{\rm H_2O} - \rho_{\rm B}) \frac{P_{\rm B} - P}{P_{\rm B} - P_{\rm H_2O}} = \rho_{\rm H_2O} \cdot \frac{P_{\rm B} - P}{P_{\rm B} - P_{\rm H_2O}} + \rho_{\rm B} \cdot \frac{P - P_{\rm H_2O}}{P_{\rm B} - P_{\rm H_2O}}.$$

$$\rho = \rho_{\text{H}_2\text{O}} \cdot \frac{P_{\text{B}} - P}{P_{\text{B}} - P_{\text{H}_2\text{O}}}$$

ВАРИАНТ 1	
X спирта	Р, г
воздух	22,1
0	19,6
0,2	19,608
0,4	19,668
0,6	19,752
0,8	19,9248
1	20,125

ВАРИАНТ 3	
X спирта	Р, г
воздух	10
0	9
0,2	9,036
0,4	9,062
0,6	9,115
0,8	9,168
1	9,212

ВАРИАНТ 2	
Х спирта	Р, г
воздух	25,4
0	22,2
0,2	22,253
0,4	22,345
0,6	22,452
0,8	22,653
1	22,855

ВАРИАНТ 4	
Х спирта	Р, г
воздух	15
0	13
0,2	13,004
0,4	13,078
0,6	13,162
0,8	13,295
1	13,415

• Вопросы для самоконтроля

- 1. Что называют парциально-молярной величиной любого свойства компонента в растворе; поясните физический смысл величины?
- 2. Запишите уравнение Гиббса-Дюгема и поясните физический смысл входящих в него величин.
- 3. Каким методом в работе определяют парциально-мольный объем компонентов?
- 4. Выше или ниже аддитивной прямой, характерной для идеальных растворов, пойдет зависимость мольного объема раствора, если смешение чистых жидких компонентов I и 2 происходит с выделением большого количества тепла?

ЗАВИСИМОСТЬ СКОРОСТИ ХИМИЧЕСКОЙ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ И КОНЦЕНТРАЦИИ РЕАГИРУЮЩИХ ВЕЩЕСТВ

Цель работы: исследование влияния температуры и концентраций реагирующих веществ на скорость гомогенной химической реакции

Температура = 25 C	
t	С
минут	моль/л
1	0,038
2	0,037
3	0,036
5	0,034
10	0,030
15	0,026
20	0,024
25	0,021
30	0,020
35	0,018
40	0,017
50	0,015
60	0,013
70	0,012

Температура = 45 C	
t	С
минут	моль/л
1	0,036
2	0,033
3	0,030
5	0,026
10	0,019
15	0,015
20	0,012
25	0,011
30	0,009
35	0,008
40	0,007
50	0,006
60	0,005
70	0,004

Лабораторная работа № 11

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИОННОЙ ЗАВИСИМОСТИ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ РАСТВОРОВ И АДСОРБЦИИ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

Цель работы: исследование влияния добавок поверхностно-активного вещества на поверхностное натяжение бинарного раствора

$$\Gamma_i = (n_i^{\varpi} - n_i^{V})/\varpi,$$

$$\Gamma_i = -\frac{a_i \cdot (1 - X_i)}{RT} \frac{d\sigma}{da_i},$$

$$\Gamma_i = -\frac{C_i}{RT} \frac{d\sigma}{dC_i},$$

$$\sigma = \frac{p_{max} \cdot r_{\text{кап}}}{2}$$

$$r_{\mathsf{KAII}} = \frac{2\sigma'}{p'_{\mathit{max}}}$$

$$\sigma_{x} = \frac{p_{max}}{2} \frac{2\sigma'}{p'_{max}} = \sigma' \frac{p_{max}}{p'_{max}}$$

С спирта, Моль/л	L, MM
0	155
0,01	117
0,02	97
0,03	86
0,04	78
0,05	72
0,06	67
0,07	63
0,08	59
0,09	56
0,1	53

• В выводах необходимо отразить следующее:

- 1. Зависимость поверхностного натяжения раствора от его состава;
- 2. Зависимость адсорбции растворенного вещества от состава раствора.

• Контрольные вопросы

- В результате чего возникает поверхностное натяжение?
- Какие вещества называют поверхностно-активными?
- Что такое адсорбция?
- В чем заключается сущность метода максимального давления в газовом пузырьке?

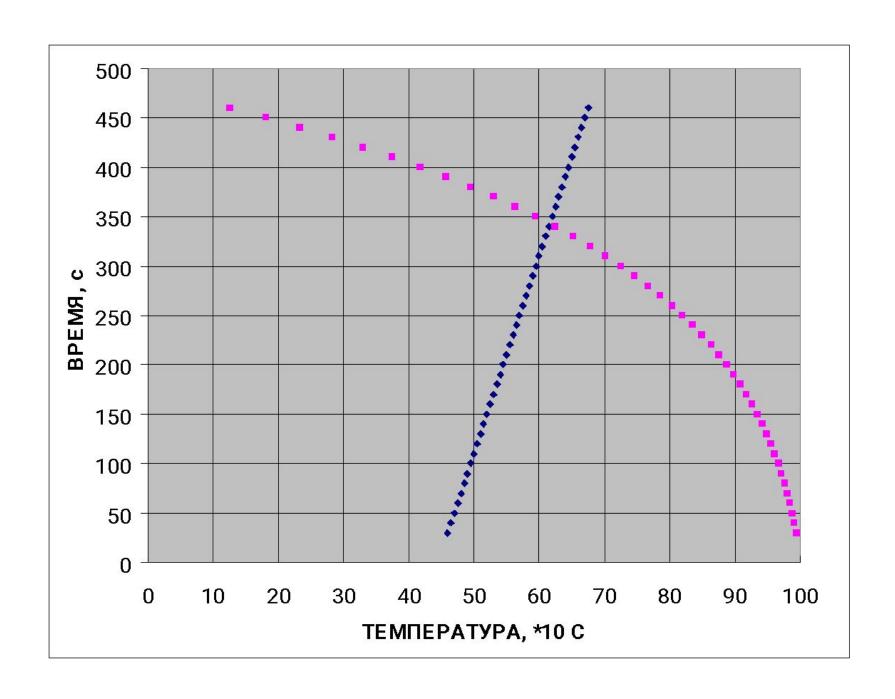
Лабораторная работа № 10

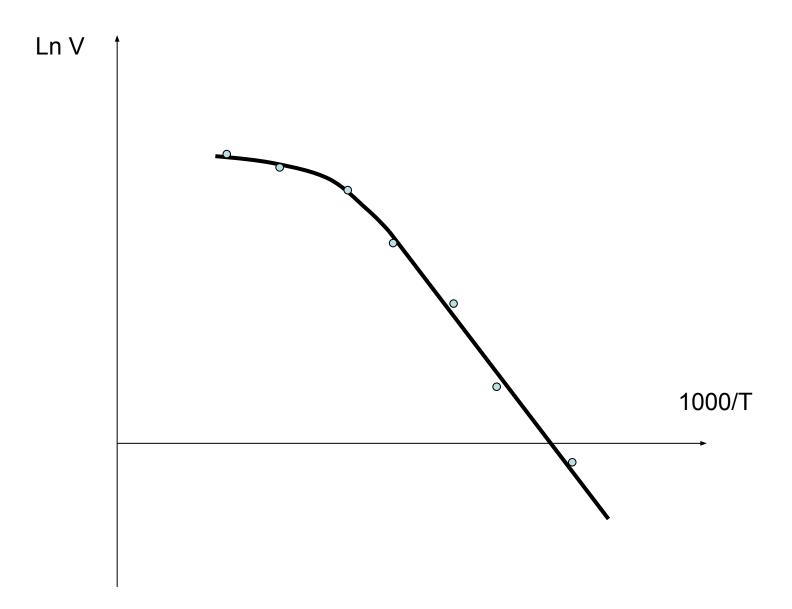
ИЗУЧЕНИЕ ФОРМАЛЬНО-КИНЕТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ РЕАКЦИИ ГОРЕНИЯ УГЛЕРОДА В АТМОСФЕРЕ ВОЗДУХА

Цель работы: исследование зависимости скорости гетерогенного процесса от температуры, выявление лимитирующих стадий процесса.

$$v = \frac{p_{O_2}}{\frac{\delta}{D} + \frac{1}{\kappa}}$$

$$v = v_{xum.peakuuu} = A \cdot \exp(-E/RT)$$


$$v = v_{\text{диф}} = D\omega \frac{C - C_{\omega}}{\delta} = BT^{1.7} \frac{\omega}{\delta}$$



Время,с	Темпер,С	Убыль массы, мг
30	460	0,3
40	465	0,6
50	470	0,9
60	475	1,3
70	480	1,6
80	485	2,1
90	490	2,5
100	495	3,0
110	500	3,6
120	505	4,2
130	510	4,8
140	515	5,5
150	520	6,2
160	525	7,0
170	530	7,9
180	535	8,8
190	540	9,9
200	545	10,9
210	550	12,1
220	555	13,4
230	560	14,7
240	565	16,2
250	570	17,7

260	575	19,4
270	580	21,1
280	585	23,0
290	590	25,0
300	595	27,2
310	600	29,5
320	605	31,9
330	610	34,6
340	615	37,3
350	620	40,3
360	625	43,4
370	630	46,7
380	635	50,3
390	640	54,0
400	645	58,0
410	650	62,2
420	655	66,7
430	660	71,4
440	665	76,3
450	670	81,6
460	675	87,2

В выводах необходимо отразить следующее:

- 1. Зависимость скорости процесса от температуры;
- 2. Влияние повышения температуры на режим процесса;
- 3. Определение температурных интервалов, в пределах которых процесс протекает в диффузионном и кинетическом режимах;
- 4. Способ определения и величину энергии активации химической реакции.

Контрольные вопросы:

- Из каких этапов состоит процесс горения углерода в атмосфере воздуха?
- 2. Как влияет температура на скорость процесса, идущего в различных режимах?
- 3. Каким образом процесс горения можно переводить из одного режима в другой?
- 4. Как можно увеличить скорость реакции, протекающей в кинетическом (диффузионном) режиме?

