
АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ И КОНТРОЛЬ КАЧЕСТВА ПРИ УСТРОЙСТВЕ ВЕНТИЛЯЦИОННЫХ СИСТЕМ ЗДАНИЙ И СООРУЖЕНИЙ В КИРОВСКОЙ ОБЛАСТИ

Современная вентиляция ориентирована на создание комфортных условий для нахождения людей в бытовых и производственных помещениях разного класса.

Главным источником загрязнения воздуха в жилом помещении является человек.

В современных требованиях по вытяжке пишут о необходимости удалять в час из кухни, туалета и ванной комнаты 60–90, 25 и 25 м³ воздуха, соответственно.

Классификация систем вентиляции

- -по способу перемещения воздуха: естественная и искусственная;
- -по назначению: приточная и вытяжная;
- -по зоне обслуживания: местная и общеобменная;
- -по конструкции: наборная и моноблочная.

Основные компоненты системы вентиляции:

Воздухозаборная решетка

Воздуховоды

Воздушный клапан

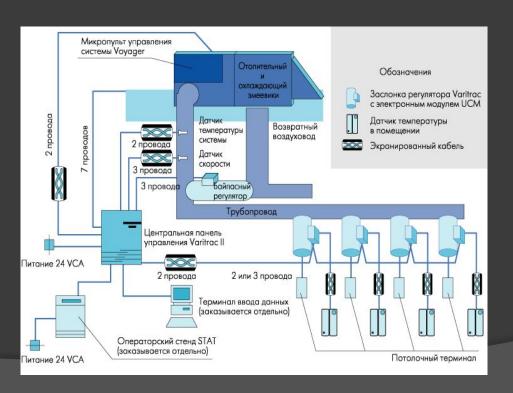
Фильтр

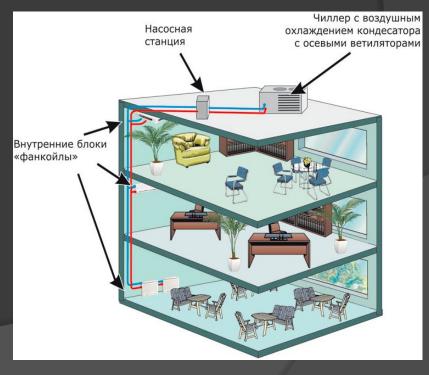
Калорифер

Вентилятор

Шумоглушитель

Распределители воздуха и адаптеры (решетки, диффузоры)


Системы автоматики



Сравнение систем кондиционирования воздуха.

Воздушная система с переменным расходом воздуха VAV (центральная система с количественно-качественным регулированием)

Система «чиллерфанкойлы» VWV (водовоздушная система).

Контроль качества систем вентиляции

Контроль качества систем вентиляции проводится непосредственно на объекте. Замеряется фактический расход воздуха и вследствие расчётов сравнивается с нормативным. Далее вычисляется невязка, если она меньше 10% значит система вентиляции удовлетворяет всем нормативным требованиям.

Приборы для измерения скорости воздуха


1.Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.

2. Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.

3. Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.

4. Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли

5. Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте с **трубкой Пито**, этим устройством можно измерять потоки воздуха до 100 м/с.

6. Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров.

Строительный мониторинг

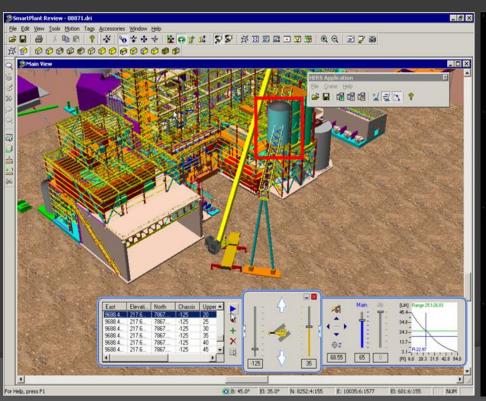
Амплитудный волоконно- оптический датчик деформаций

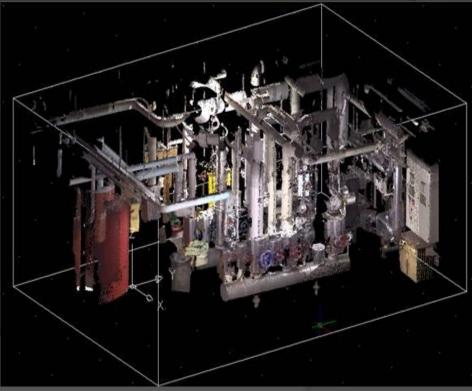
Датчики СО2

Визуальное моделирование процессов строительства на виртуальной площадке.

Информационная 4D модель сооружаемых объектов – центральное звено Системы, включающее в себя 4 параметра: три пространственные координаты и время – и поэтому названное 4D

ГИС территориального планирования площадок строительства и локальная ГИС для управления площадкой строительства отличаются масштабом представления данных.




GPS/ГЛОНАСС – глобальные навигационные спутниковые системы

Через GPS/ГЛОНАСС автоматизируется измерение положения объектов и их элементов, например, компонентов монтажного крана, в пространстве.

Облако точек, полученное с помощью лазерного сканирования

В капитальном строительстве технология обеспечивает контроль процессов строительства, установки и удаления крупных частей сооружений или оборудования

Технология автоматизированной идентификации на базе штрихового кодирования / радиочастотной идентификации

Установка на изделиях штрихкодовых или RFID-меток

Мобильные устройства и технологии беспроводной широкополосной связи.

Мобильные устройства используются для дистанционного доступа к базе данных 4D модели из любой точки предприятия. Сеть беспроводного доступа необходима для подключения к сети мобильных устройств, геодезического оборудования и передачи новых измерений

ТЕХНОЛОГИИ БЕСПРОВОДНОЙ ШИРОКОПОЛОСНОЙ СВЯЗИ

Герминалы сбора данных

Лобильные рабочие места

Геодезическое оборудование

Планшетные ПК

Технология	Стандарт	Пропускная способность	Раднус действия
WEFI	802.11g 802.16d	до 54 Мбит/с до 75 Мбит/с	до 100 метров 6–10 км
Wilviax			
WiMax	802.16e	да 30 Мбит/с	1–5 км

Основные результаты применения системы:

- •Сокращение сроков выполнения работ за счёт оптимизации выполнения строительно-монтажных работ;
- •Повышение безопасности на строительной площадке за счет визуального контроля состояния объектов на 4D моделях и надзора за качеством используемых для строительства изделий;
- •Сокращение затрат на строительство за счет сокращения сроков и трудоемкости работ;
- •Возможность получить информацию о состоянии конструкции изнутри в неискаженном виде.

Таким образом, система мониторинга, основанная на применении новейших технологий, – это залог безопасности, надежности и разумного экономического подхода в современном строительстве.

СПАСИБО ЗА ВНИМАНИЕ!