Пекция 4

Задачи линейной оптимизации

Формулировка задач линейной оптимизации

Найти максимальное или минимальное значение целевой функции

$$F(x) = \sum_{j=1}^{n} c_j x_j \to \max \quad \text{(min)} \quad (1)$$

при имеющихся ограничениях

$$\sum_{i=1}^{4} a_{ij} x_j \le b_i , i = 1,..m .$$
 (2)

Здесь

 $c_1 \;, c_2 \;, \; ..., \; -c_n \;$ - коэффициенты целевой функции,

 b_i - ограничения по ресурсам,

 a_{ij} - **нормы расхода ресурсов**, показывающие, сколько требуется **ресурса** типа i для выпуска единицы **продукции** типа j ,

 x_j - количество выпускаемых товаров

Вектор неизвестных, $\mathbf{x} = (x_1, x_2, ..., x_n)$ удовлетворяющих условию данной задачи, называется *допустимым решением* (или *допустимым планом*).

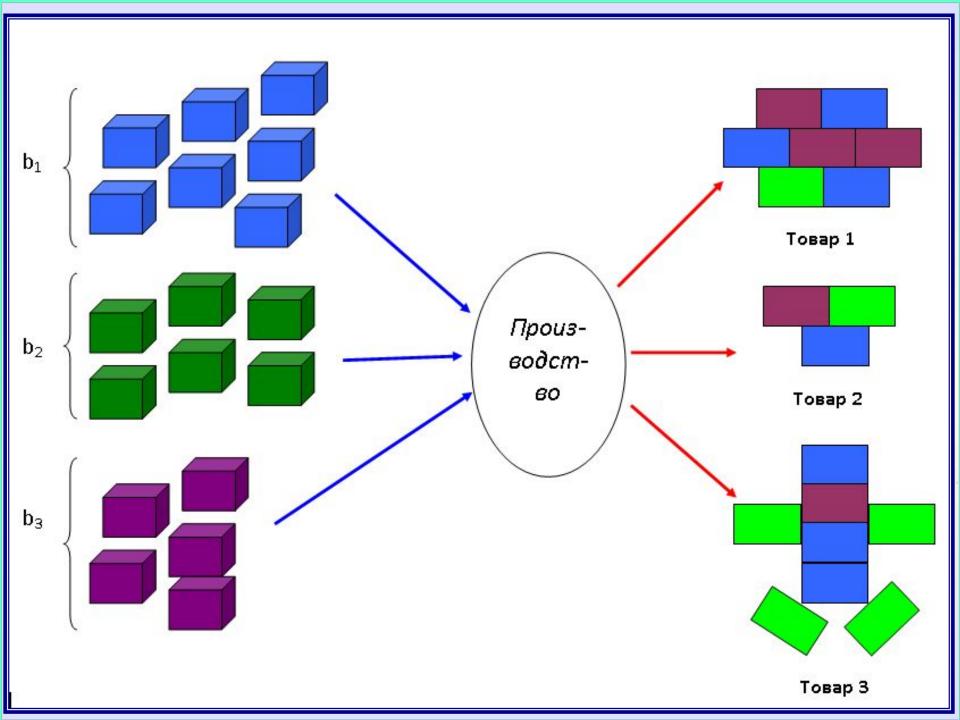
Допустимое решение называется оптимальным, если оно оптимизирует (т.е. максимизирует или, в зависимости от условий задачи, минимизирует) значение целевой функции.

Например, рассматривается вопрос о наиболее прибыльной стратегии предприятия. Пусть оно выпускает товары (например, телевизоры) трех видов (марок): 1,2,3.

Требуется определить, какое количество телевизоров первой, второй и третьей марок произвести, чтобы прибыль от продаж была наибольшей.

В этом случае n=3. Мы должны знать прибыль от реализации *одного телевизора каждой марки* (${}^{C_1}, {}^{C_2}, {}^{C_3}$) и имеющиеся у нас ресурсы (${}^{b_1}, {}^{b_2}, ..., {}^{b_m}$), а также то, сколько ресурса каждого вида необходимо для производства одного телевизора марки 1, 2 и 3 (${}^{a_{i1}}, {}^{a_{i2}}, {}^{a_{i3}}$).

В результате решения задачи (1) мы узнаем, *сколько телевизоров* марки 1 (x_1), 2 (x_2) и 3 (x_3) должно выпустить предприятие, чтобы получить наибольшую возможную – *при имеющихся ресурсах* – прибыль.



Построение модели оптимального распределения ресурсов

Предприятие располагает определенным количеством трудовых, сырьевых и финансовых ресурсов.

Требуется определить, какое количество продукции четырех типов П1, П2, П3, П4 нужно выпустить, чтобы получить максимальную прибыль. Нормы расхода и прибыль от реализации единицы каждого вида продукции, а также имеющиеся ресурсы приведены в таблице.

Pecypc	П1	П2	ПЗ	П4	наличие ре- сурса
прибыль	110	80	120	150	-
Трудовые ре- сурсы	2	3	1	4	25
Сырье	5	7	4	6	90
Финансы	3	5	8	12	140

Введем обозначения:

 x_j - количество выпускаемой продукции

типа j(j=1,2,3,4);

 b_i - количество ресурса вида i (i=1,2,3);

 a_{ij} - *норма расхода* i — го ресурса для вы-

пуска единицы продукции типа ј;

 c_j - прибыль, получаемая от реализации

единицы продукции типа $\it j$.

Таким образом, нужно *максимизировать целевую*

функцию

$$F(x) = 110x_1 + 80x_2 + 120x_3 + 150x_4 \rightarrow \text{max}$$

при ограничениях

$$5x_1 + 7x_2 + 4x_3 + 6x_4 \le 90$$

$$3x_1 + 5x_2 + 8x_3 + 12x_4 \le 140$$

$$x_1, x_2, x_3, x_4 \ge 0,$$

 $2x_1 + 3x_2 + x_3 + 4x_4 \le 25$

где левая часть представляет выражение для величины требуемого ресурса, а правая – его *количество*.

Решение задачи, например, с помощью *Поиска решения* Excel, дает оптимальные значения выпускаемого продукта, обеспечивающие *максимальную прибыль*

$$x_1^* = 4,615$$
 $x_2^* = 0$ $x_3^* = 15,769$ $x_4^* = 0$.

Задача о распределении бюджета

Вариант	Чистая прибыль, тыс. д.е.	Вложения по годам, тыс. д.е.					
		1	2	3	4	5	
Расширение завода в стране А	400	100	50	200	100	0	
Расширение мощностей по производству ПК в своей стране	700	300	200	100	100	100	
Открытие нового завода в стране $\boldsymbol{\mathcal{E}}$	800	100	200	270	200	100	
Расширение мощностей по производству комплектующих в своей стране	1000	200	100	400	200	200	
Имеющиеся средства	61	500	450	700	400	300	

Целевая функция $400 \cdot x_1 + 700 \cdot x_2 + 800 \cdot x_3 + 1000 \cdot x_4$ при ограничениях $100 x_1 + 300 x_2 + 100 x_3 + 200 x_4 \le 500$ $50x_1 + 200x_2 + 200x_3 + 100x_4 \le 450$ $200x_1 + 100x_2 + 270x_3 + 400x_4 \leq 700,$ $100 x_1 + 100 x_2 + 200 x_3 + 200 x_4 \le 400$ $100 x_2 + 100 x_3 + 200 x_4 \le 300$, $x_i = 0$ или 1, i = 1, ..., 4.

Пусть вложение дополнительных средств x_{ij} в операцию (i,j) сокращает время ее выполнения

$$c \quad t_{ij} \quad \partial o \quad t'_{ij} < t_{ij}$$

Требуется определить времена *начала* T_{ij}^{H} и *окончания* T_{ij}^{o} всех работ, и величину *дополнительных средств* x_{ij} , которые необходимо вложить в каждую из них, чтобы *минимизировать общее время выполнения проекта*.

При этом общая сумма ограничена величиной C, а продолжительность каждой операции не должна быть меньше *минимально возможного времени* ее выполнения d_{ij} .

Пример оптимизации проекта по времени.

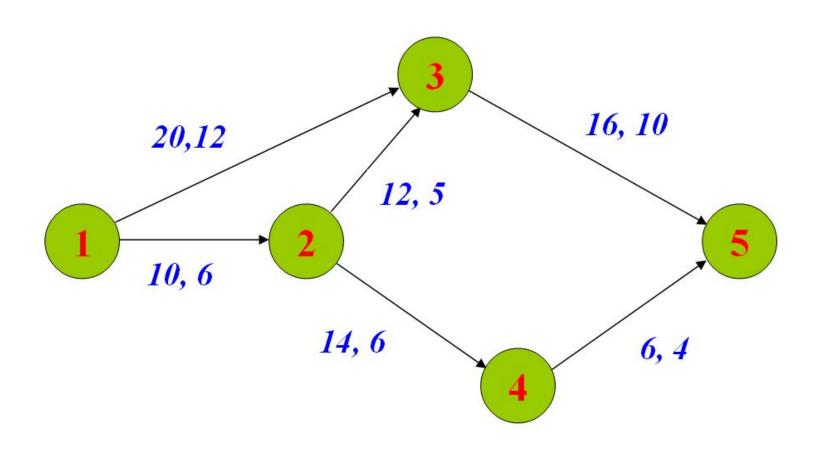


Рис. 1. Приведены продолжительности t_{ij} и минимально возможные времена d_{ij} выполнения работ соответственно (в днях).

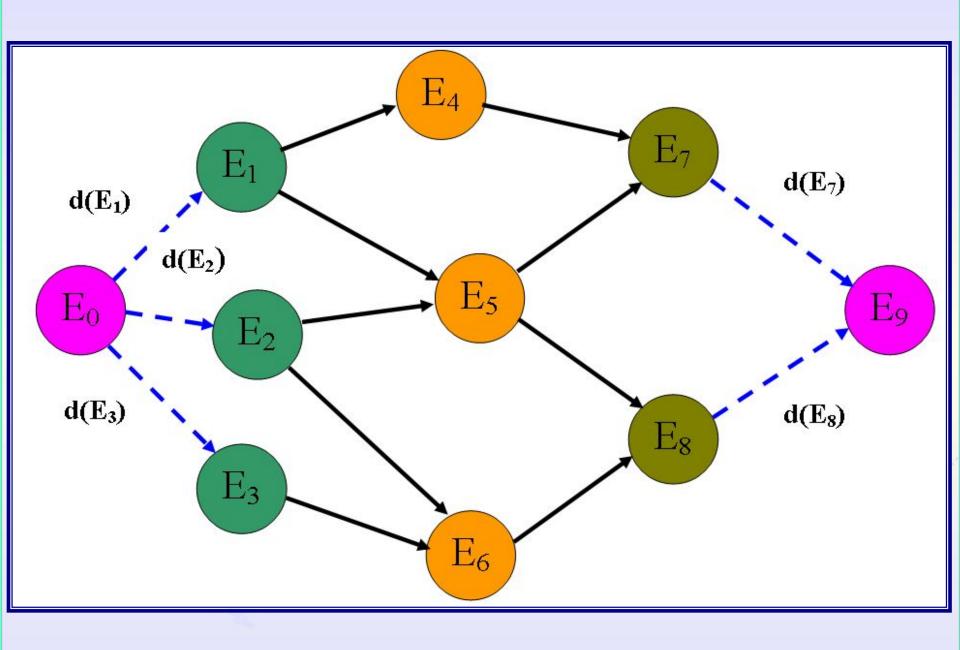
А. Задача о максимальном потоке

По сети, состоящей из множества вершин $E_0, E_1, ..., E_n$ и дуг, пропускаются потоки вещества (газ, жидкость) или транспорта.

Каждая вершина E_i характеризуется **интенсивностью потока** $d(E_i)$, причем, если $d(E_i) > 0$, то вершина называется <u>источником</u>, если $d(E_i) < 0$, - <u>стоком</u>; все остальные вершины являются <u>промежуточными</u>.

Каждой дуге (E_i, E_j) сети соответствует некоторая *пропуская способность* b_{ij} , т.е. *максимальный поток*, который она может пропустить за единицу времени. В простейшем случае имеется единственный источник E_0 и единственный сток E_n .

Требуется найти максимальную величину потока из источника в сток. Поток в сети представляет совокупность потоков $\{x_{ij}\}$ по всем ее дугам (количество перемещаемой субстанции в единицу времени).



Б. Задача о потоке минимальной стоимости

Задана сеть, каждой дуге которой соответствует пропускная способность b_{ij} и дуговая стоимость

 c_{ij} (стоимость доставки единицы потока по дуге).

Необходимо найти поток из источника E_0 в сток

 E_n заданной величины B, обладающий мини-

мальной стоимостью.

Под стоимостью потока понимается стоимость доставки продукта из источника в сток.

