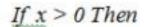
Основные инструкции языка Visual Basic

Основные инструкции языка Visual Basic

- Сгруппируем основные инструкции языка Visual Basic по типу операций:
- присваивания, в том числе с выполнением математических операций в правой части инструкции;
- проверки условий, управления последовательностью исполнения инструкций, организации циклов;
- инструкции для работы с файлами.

Основные операторы VBA

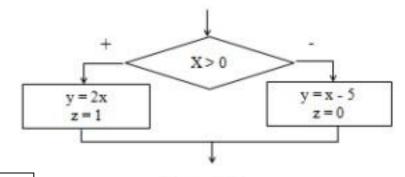

Операторы присваивания Dim-объявляет переменные и выделяет память под них

Data- устанавливает значение системной даты

Операторы условияIf <Bыражение> Then <Инструкция, исполняемая, если выражение-условие истинно>.(простая структура)

If...... Then......Else (блочная структура)

Примеры алгоритмов


$$y = 2 * x$$

$$z = 1$$

Else

$$y = x - 5$$

z = 0

Рис. 3.3

Ветвление

End If

If
$$x > 0$$
 Then
$$y = 2 * x$$
Else
$$y = x - 5$$
Else
$$y = x^2$$
Puc. 3.4

End If

End If

Основные операторы VBA

Операторы цикла For нач_значение To кон_значение Step шаг БЛОК_ОПЕРАТОРОВ
[Exit For]
БЛОК_ОПЕРАТОРОВ
Next СЧЕТЧИК

для организации циклов с неизвестным заранее числом повторений используются

циклы с предусловием - Do While ... Loop

циклы с постусловием - Do ... Loop While

Примеры алгоритмов

$$S = 0$$

$$P = 1$$

For
$$i = 1$$
 to 5

$$S = S + 2$$

$$P = P * S$$

Next i

$$k = 0$$

 $f = 1$
Do While $f <= 15$
 $k = k + 1$
 $f = f + 2$
Loop

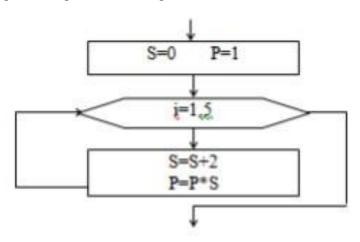
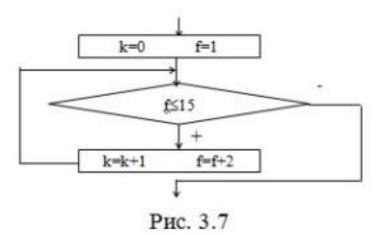



Рис. 3.6

Арифметические операции

Операция	Содержание операции	Приоритет	
٨	Возводит первое арифметическое выражение в	1	
	степень,		
	задаваемую вторым арифметическим выражением		
_	Знак минус ставится перед именем переменной, константы или перед числом	2	
*	Перемножает два арифметических выражения	3	
/	Делит первое арифметическое выражение на второе	3	
\	Округляет два арифметических выражения до целых значений и делит первое число на второе. Результат округляется до целого	4	
Mod	Округляет оба арифметических выражения до целых чисел, делит первое число на второе и возвращает в качестве результата остаток		
+	Складывает два арифметических выражения	6	
_	Вычитает из первого арифметического выражения второе	6	

Операции сравнения

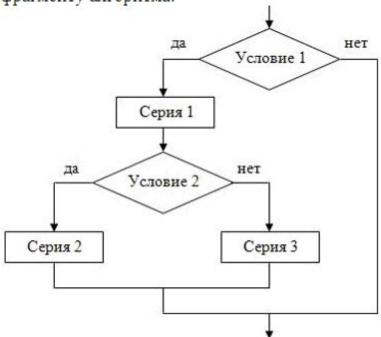
Операц	Наименован	Пример (R имеет тип	Результат
ия	ие	Boolean)	R
=	Равно	R = (10=5)	False
>	Больше	R = 10>5	True
<	Меньше	R = 10 < 5	False
>=	Больше	R = "a" >= "b"	False
	или равно		
<=	Меньше или равно	R = "a" <= "b"	True
<>>	Не равно	R = "a" <> "b"	True

Логические операции

Операция	Наименование
And	Логическое умножение
Or	Логическое сложение
Xor	Исключающее Or (или)
Not	Логическое отрицание

Тип	Размер	Разрядность	Диапазон, пояснение
данных	В	(цифр)	
D 1	байтах	1	T P I
Boolean	2	1	True, False – логические значения
Byte	1	≤ 3	0, 255 – целые положительные числа
Integer	2	≤ 5	-32768, 32767 – целые числа
Long	4	≤ 10	-2147483648, 2147483647 — длинные целые
Single	4	≤ 7	-3.402823·10 ³⁸ , -1.401298·10 ⁻⁴⁵ — отрицательные числа
Double	8	≤ 15	1.401298·10 ⁻⁴⁵ , 3.402823·10 ³⁸ – положительные числа
Currency	8	≤ 19	Действительные числа с двойной точностью
Date	8		Действительные числа с 4 знаками после десятичной
String	1+L		точки. Используются для точных денежных расчетов
Object	4		01.01.0100, 31.12.9999 – даты
Variant			Строка из L символов; L≤ 65535
			Объект – фактически, ссылка на него, т.е. адрес его
			размещения в оперативной памяти
			Может принимать любой тип данных, т.е. настройка на тип
			операнда происходит во время исполнения инструкций или
			процедур

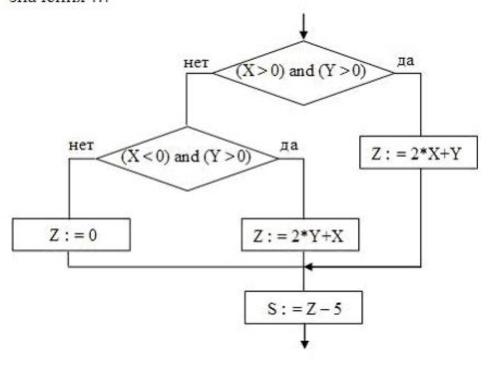
Встроенные функции Visual Basic


Функция	Содержание арифметической функции	
1	2	
Abs(x)	Возвращает значение, тип которого совпадает с	
	типом переданного аргумента Х, равное	
	абсолютному значению указанного числа	
Atn(x)	Возвращает значение типа Double, содержащее	
	арктангенс числа X	
Cos(x)	Возвращает значение типа Double, содержащее	
	косинус угла Х	
Exp(x)	Возвращает значение типа Double, содержащее	
	результат возведения числа е (основание	
	натуральных логарифмов) в указанную степень	
Fix(x)	Возвращает значение типа, совпадающего с	
	типом аргумента, которое содержит целую часть	
	числа, ближайшее отрицательное целое число,	
	большее либо равное указанному Х	

Int(x)	Возвращает значение типа, совпадающего с		
	типом аргумента, которое содержит целую часть		
	числа, ближайшее отрицательное целое число,		
	меньшее либо равное указанному Х		
Log(x)	Возвращает значение типа Double, содержащее		
	натуральный логарифм числа Х		
Rnd(x)	Возвращает значение типа Single, содержащее		
	случайное число		
Sgn(x)	Возвращает значение типа Variant (Integer),		
	соответствующее знаку указанного числа.		
	Обязательный аргумент: число Х может		
	представлять любое допустимое числовое		
	выражение. Возвращаемое значение: Х>0, то		
	Sgn(x) возвращает 1; если X равняется нулю, то		
	0; если X<0, то -1		
Sin(x)	Возвращает значение типа Double, содержащее		
	синус угла Х		

Sqr(x)	Возвращает значение типа Double, содержащее квадратный корень указанного числа
Tan(x)	Возвращает значение типа Double, содержащее тангенс угла X
Строковые	LCASE() — преобразование строки в строчные буквы UCASE() — преобразование строки в заглавные буквы LEN() — определение длины строки и др. INSTR() — позиция первой встречи одной строки внутри другой

Даты и времени	DATE() – текущая дата
	ТІМЕ() – текущее время
	NOW() – текущая дата и время
	DAY() – номер дня года и др.
Преобразования	CINT() – действительного числа в
типов данных	целое (с округлением)
	CSTR() – числа в строку символов
	CVAR() – преобразование в тип
	данных VARIANT
	FORMAT() – форматирование
	данных, формирование строк
	VAL() – преобразование строки
	символов в число и др.


Укажите фрагмент программы, соответствующий приведенному фрагменту алгоритма.

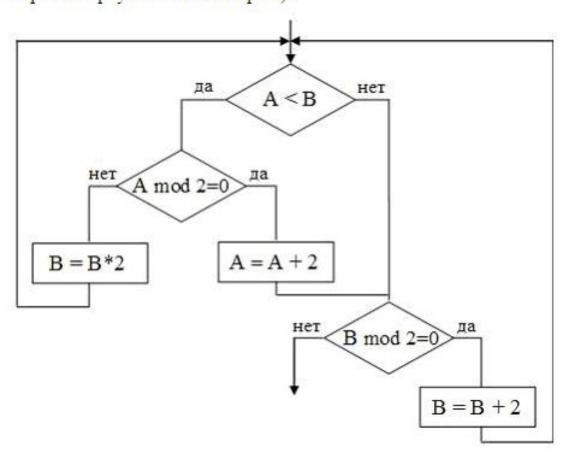
- если Условие 1
 то Серия 1
 иначе
 если Условие 2
 то Серия 2
 иначе Серия 3
 все
 все
- <u>если</u> Условие 1
 <u>то</u> Серия 1
 <u>все</u>
 <u>если</u> Условие 2
 <u>то</u> Серия 3
 <u>иначе</u> Серия 2
 <u>все</u>
- если Условие 1
 то Серия 1
 все
 если Условие 2
 то Серия 2
 иначе Серия 3
 все
 - если Условие 1
 то
 иначе
 если Условие 2
 то серия 2
 иначе серия 3
 иначе серия 1
 все

все

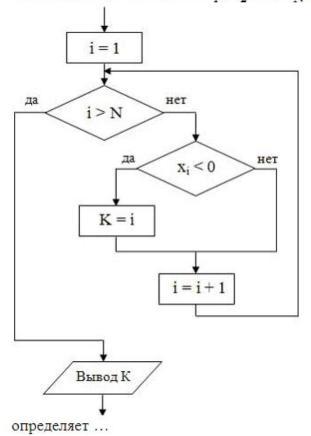
Дан фрагмент алгоритма. Логическая операция and используется для обозначения одновременности выполнения условий. При начальных значениях переменных X=2, Y=10 переменные Z и S примут значения ...

- O Z=22, S=17
- O Z=14, S=9
- О Z=14, S не определено
- O Z=36, S=31

Разветвляющаяся конструкция относится к базовым алгоритмическим конструкциям и обеспечивает выбор между двумя альтернативами в зависимости от входных данных. Вначале проверяется условие (вычисляется, логическое выражение). Если условие истинно, то выполняются действия 1 — последовательность команд, на которую указывает стрелка с надписью «да» (положительная ветвь). В противном случае выполняются действия 2 (отрицательная ветвь). Различают полное и неполное ветвления.


Полное ветвление позволяет организовать две ветви в алгоритме, каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какая ветвь была выбрана.

В предложенной задаче в блоках условий в логическом выражении используется логическая связка and (И) – коньюнкция. Если она объединяет истинные условия – все логическое выражение будет истинным, а во всех остальных случаях – ложным.


Проверяем первое логическое выражение. Оно истинно, так как истинны оба условия, в него входящие (X>0 и Y>0). Поэтому дальнейшее вычисление пойдет по ветке «да». Вычисляем значение переменной Z=2*2+10=14. Значение переменной S вычисляется независимо от того, какая ветвь была выбрана, поэтому S=14-5=9.

Определите, при каких начальных значениях переменных A и B алгоритм, представленный следующей блок-схемой, закончит работу (mod – функция, вычисляющая остаток от деления нацело первого аргумента на второй).

- O A=1, B=6
- O A=5, B=3
- O A=3, B=5
- O A=4, B=2

Задан одномерный массив $X_1,\,X_2,\,...,\,X_N.$ Фрагмент алгоритма

- О индекс первого отрицательного элемента
- О количество отрицательных элементов
- минимальный элемент массива
- О индекс последнего отрицательного элемента

```
Функция mod вычисляет остаток от деления нацело первого аргумента на второй. Значение переменной K после выполнения следующей программы: k:=0; ни для i от l до l00 если (mod(i,3)=2) и (mod(i,5)=1) то k:=k+1 все кц
```

Значение переменной m после выполнения фрагмента алгоритма (операция $\operatorname{mod}(x,y)$ – получение остатка целочисленного деления x на y)

k = 70

выбор

будет равно ...

 при
 mod(k,12)=5:
 m:=k;

 при
 mod(k,12)<5:
 m:=2;

 при
 mod(k,12)=13:
 m:=3;

 иначе
 m:=1;

все

будет равно ...

0 6

0 7

0 288

0 3

0 2

0 1

0 3

O 70