
CAS London CPD Day 2016

Little Man Computer

Teaching London Computing

William Marsh  
School of Electronic Engineering and Computer Science

Queen Mary University of London



Overview and Aims
• LMC is a computer simulator

• … understanding how a computer work

• To program the LMC, must understand:
• Memory addresses
• Instructions
• Fetch-execute cycle

• Practical exercises
• What we can learn from LMC



What is in a Computer?

• Memory
• CPU
• I/O



Simple Computer
• Processor

• CPU

• Memory
• Data
• Program  

instructions

• I/O
• Keyboard
• Display
• Disk

Memory

Keyboard  
I/F

CPU

Disk  
I/F

Display  
I/F

data

data

addresses



Memory
• Each location

• has an address
• hold a value

• Two interfaces
• address – which  

location?

• data – what  
value?

 

address

data



Quiz – What is the  
Memory?



Registers (or Accumulators)

Control  
lines

• A storage area inside the CPU
• VERY FAST
• Used for arguments and results to one calculation  

step
data

Register – 1 memory location

Read  
register

Write to  
register



MemoryI/O

I/O

CPU
Write a  

program  
here



LMC CPU Structure • Visible registers  
shown in red

• Accumulators
• Data for  

calculation
• Data
• Word to/from  

memory
• PC

• Address of next  
instruction

• Instruction
• Address

• For memory  
access

Program  
Counter

Mem  
Address

Instruction

MEM Data

ALU

Accumulator

Control
Unit

memoryaddress

data

Control Unit

ALU



Instructions

The primitive language of a computer



Instructions

• Instruction

OpCode Address

• What to do: Opcode • The instructions are  
very simple

• Each make of  
computer has
different instructions

• Programs in a high-  
level language can  
work on all  
computers

• Where: memory address
• Instructions for arithmetic

• Add, Multiply, Subtract
• Memory instructions

• LOAD value from memory
• STORE value in memory



Instructions

• Opcode: 1
decimal
digit

• Address:
two decimal
digits – xx

• Binary
versus
decimal

OpCode Address
Code Name Description
000 HLT Halt
1xx ADD Add: acc  + memory à acc
2xx SUB Subtract: acc – memory à acc
3xx STA Store: acc à memory
5xx LDA Load: memory à acc
6xx BR Branch always
7xx BRZ Branch is acc zero
8xx BRP Branch if acc > 0
901 IN Input
902 OUT Output



Add and Subtract Instruction
ADD Address

SUB Address

• One address and accumulator (ACC)
• Value at address combined with accumulator value
• Accumulator changed

• Add: ACC ß ACC + Memory[Address]
• Subtract: ACC ß ACC – Memory[Address]



Load and Store Instruction
LDA Address

STA Address

• Move data between memory and accumulator  
(ACC)

• Load: ACC ß Memory[Address]
• Store: Memory[Address] ß ACC



Input and Output

• Input: ACC ß input value
• output: output area ß ACC

• It is more usual for I/O to use special memory  
addresses

INP 1 
(Address)

OUT 2 
(Address)



Branch Instructions

• Changes program counter
• May depend on accumulator (ACC) value

• BR: PC ß Address
• BRZ: if ACC == 0 then PC ß Address
• BRP: if ACC > 0 then PC ß Address

BR Address



Assembly Code Numbers
• Memory holds numbers
• Opcode: 0 to 9
• Address: 00 to 99

• Instructions in text
• Instruction name: 

STA,  LDA
• Address: name using  

DAT

Line
1
2

INP  
STA x

ASSEMBLE 00
01

9 01
3 05

3 INP 02 9 01
4 STA y 03 3 06
5 HLT 04 0 00
6 x DAT 05 (used for x)
7 y DAT 06 (used for y)

Location



LMC Example



Simple Program
• x = y + z

LDA y

ADD z
STA x  

HLT

x
y  

z



Running the Simple Program
PC

IR LDA

LDA y

ADD z
STA x  

HLT

x
y  

z
17

9

ACC17



Running the Simple Program
PC

IR ADD

LDA y

ADD z
STA x  

HLT

x
y  

z
17

9

ACC2167



Running the Simple Program
PC

ACC

IR STA

LDA y

ADD z
STA x  

HLT

x
y  

z

26

26

17

9



Running the Simple Program
PC

ACC

IR HLT

LDA y

ADD z
STA x  

HLT

x
y  

z

26

26

17

9



Practice Exercises
• Try the first three exercises on the practical sheet



Fetch-Execute Cycle

How the Computer Processes Instructions



Fetch-Execute
• Each instruction cycle consists on two subcycles
• Fetch cycle

• Load the next instruction (Opcode + address)
• Use Program Counter

• Execute cycle
• Control unit interprets the opcode
• ... an operation to be executed on the data by the ALU

Start
Decode &  

execute  
instruction

Fetch next  
instruction

Halt



Fetch Instruction
1. Program

counter to  
address register

2. Read memory at  
address

3. Memory data to  
‘Data’

4. ‘Data’ to
instruction  
register

5. Advance
program  
counter

Program
Counter

Address

Instruction

Data

Accumulators

memoryaddress

data

Control Unit

ALU

1

2

3

4

ALU

Control
Unit



Execute Instruction
1. Decode instruction
2. Address from  

instruction to  
‘address register’

3. Access memory
4. Data from memory  

to ‘data register’

5. Add (e.g.) data and  
accumulator value

6. Update
accumulator

Program  
Counter

Address

Instruction

Data

Accumulators

memoryaddress

data

Control Unit

ALU

1

2

3

45

56

ALU

Control
Unit



What We Can Learn from LMC

1. How programming language work
2. What a compiler does
3. Why we need an OS



Understanding Variables and Assignment
• What is a variable?
• What is on the left hand side of:

x = x + 1



Understanding Variables and Assignment
• What is a variable?
• What is on the left hand side of:

A[x+1] =42



Understanding If and Loops
• Calculate the address of the next instruction

if x > 42:

large = large +

1  else:

small = small +
1



Compiler
• Compiler translates high level program to low

• Compiled languages
• Statically typed
• Close to machine
• Examples: C, C++, (Java)
• Compiler for each CPU

LDA y 11010101

ADD z 10010111
STA x 01110100
HLT 10000000

level

source code

x = y +
z

assembly code

object code



Why We Need An OS
LMC
• Only one program
• Program at fixed  

place in memory
• No

• Disk
• Screen
•…

Real Computer
• Many programs at  

once

• Program goes  
anywhere in memory

• Complex I/O



Summary of CPU Architecture
• Memory contains data and program

• Program counter: address of next instruction
• Instructions represented in binary
• Each instruction has an ‘opcode’

• Instructions contain addresses
• Addresses used to access data

• Computer does ‘fetch-execute’
• ‘Execute’ depends on opcode

• Computer can be built from < 10,000 electronic  
switches (transistors)



Project: Writing an LMC  
Interpreter



Write a Simple LMC Emulator

deffetch(memory):  
global pc, mar  
mar = pc
pc = pc + 1
readMem(memory)

def readMem(memory):  
global mdr
mdr = memory[mar]

acc=
0
mdr=
0

mar = 0
pc = 0  

memory = [504,105,306, 0,
11, 17,...]

defexecute(memory, opcode, arg):
global acc, mar, mdr,
pc  if opcode== ADD:

mar = arg

readMem(memory)  
acc = acc +
mdr

elif opcode == SUB:

mar = arg  
readMem(memory)  
acc = acc –
mdr

...


