NATALIIA ROMANENKO

genda

Data Structure

What is JCF?

The Collection Interfa
Collections entatic
Ordering a

The Lege

The Coll

M

r ;
' |
= .

e Objectives

1derstand the concepts of Java collections
ework
able to implement Java programs based

lections

Store of Data Structure

Arrays - a linear data structure and it's mainly used
to store similar data. An array is a particular
method of storing elements of indexed data.

100 bytes

tore of Data Structure
(cont.)

‘data structure consisting of a group

- of nodes. Each node is composed of a datum and a
reference to the next node in the sequence. This
ucture allows for efficient insertion or removal
elements from any position in the sequence.

12] &1>199] o1>(37] e >X

ore of Data Structure
(cont.)

a reference to the next and previous
Doubly Linked List.

Store of Data Structure
(cont.)

Binary tree is a tree data structure in which each
node has at most two child nodes, usually
distinguished as "left"” and "right".

Store of Data Structure
(cont.)

A hash table, or a hash map, is a data structure that
associates keys with values.

HashTable

0
1
2
3
4
5
b
7

a Limitation of Arrays

y useful type in Java but it has its

e an array is created it must be sized, and this
e is fixed; |
ntains no useful pre-defined methods.

J es with a group ON eneric collection classes
at grow as more elesw are added to them, and
| these classes provid f useful methods.

‘m This group of collection classes are referred to as the
Java Collections Framework.

Is a Collections
Framework?

itecture for representing and
actions.

ludes:
erfaces: A hierar
)lementations

rorithms: The methods that perform useful
C utations, such as searching and sorting, on
objects that implement collection interfaces.

y of abstract data types.

rarchy of interfaces

[terator<E>
Iterable<E>

ListIterator<E>
| Collection<E>

P
-
)
i

Map<K, V>
SortedMap<K, V>

-
-
f”
_-
1

- SortedSet<E>

-

NavigableMap<K, V>

NavigableSet<E>

on Conventions

lonException
XCer

r -ArgumentExep

IStateException

hElementException
vinterException

ndexOutOfBoundsException

|terators

ect that enables a programmer to
1er, particularly lists.

terface Iterator<k

1 gﬂﬁgmﬁg&gaémom? extends CharSequence> coll, int maxLen) {

,-‘. CharSequence> it = coll.iterator();

0){
e str=it

vlderainovets v /optional

(S
-

System.out.printin(coll);

_ollection<E>

tends Iterable<E> {

Object element); //optic
rator();
1S
All(Collection<?> c);
ection<? extends E> c); //optional
All(Collection<?> c); //optional

(Collection<?>c); //optional
//optional

// Array operations
)bject[] toArray();
T[] toArray(T[] a);

Set

lon that cannot contain duplicate

erface moc e mathematical set
action and is usec represent sets, such as
rds comprising a poker hand, the courses

o up a student'’s schedule, or the processes
1 on a machine

(methods)

ection<E> {

b lement); //op

0.;

11(Collection<?> c);
lection<? extends E> c); //optional
Collection<?> c); //optional
ollection<?>c); //optional
//optional

/ A Operatic
Object[] toArray();
> T[] toArray(T[] a);

List

2d collection (sometimes called a

ate elements

> (methods)

ection<E> {

); //optiona
int index,
ends E> c); //optional

0);

terator();

Tt tor<E> ator(int index);

/ Range-view
<E> subList(int from, int to);

1 .

titerators

xtends Iterator to treat the
allowing

S to the
rard and backwarc

position (index) of elements
aversal

fication and insertion of elements

erator<E> (methods)

Istiterator<E> extends Iterator<E> {

ean hasPreviou
ious();
tindex();
viousIndex();
_ 2move(); //optional
70iC E e); //optional
void add(E e); //optional

List

o> |t =

size());

W

)bj = it.previo

1ISe obj

Queue

ection used to hold multiple
processing. Besides basic

a Queue provides additional
Inspection operations

n operati
1on, extraction, &

s typically, but do not necessarily, order
nts in a FIFO (first-in-first-out) manner

aue<E> (methods)

eue<E> extends Collection<E> {
ArOWS

e
1 0ffer(E e); //null
ve(); //throws

//null

\UA)

Jueue

1herited core services offered
ffers following methods in

Insert

Remove

Examine

‘Deque

lon that supports element insertion
ends

‘Deque sed as a queue, FIFO
n-First-Out) behavior results

s can also be used as LIFO
n-First-Out) stacks

a<E> (methods)

> extends Queue<E> {

offerFirst(E e)
veekFir: t()

t(), getLast()

() (removeFirst()), rer
yeLast(e, removeLastOccu

ollFirst()), pollLast()

Object 0)

irstOccurrence(Object o),
ce(Object o)

inglterator()

-

vop() (1 oveFirst(e)
- push(E e) (addFirst(E e))

om Queue, from Stack

sortedSet

et that maintains its elements in
everal additional operations are
d to ta ntage of the ordering. Sorted
ire used for nat 7 ordered sets, such as
ists and membership rolls

%

dSet<E> (methods)

t<E> extends Set<E> {

lement, E toElement);
ent);

> c llSEt(E v

)

Or access
? super E> comparator();

Comparatc

Map

maps keys to values. A map cannot
eys; each key can map to at
One value

[ap interface provides three collection views,
allow a map's contents to be viewed as a set
vS, collection of values, or set of key-value

gS

K,V> (methods)

V> {

ainsKey(Obje 4
ontainsValue(Object value

‘ .ptY();

qti ONS
(Map<? extends K, ? extends V> m);

K,V> (methods)

et();

e for entrySet elements
ace Entry {

el);
value);

Map.Entry

ntry {

-

| fe(V value

d

o> map = new HashMap<String, String>();

<String, String> entry : map.entrySet()) {

if("2".equals(entry.getKey()))
entry.setValue("x");

ortedMap

a Map that maintains its mappings
order. This is the Map analog of
et. Sorted maps are used for naturally
ed collections o value pairs, such as

naries and telephone directories

ap<K,V> (methods)

K, V> extends Map<K, V>{

mKey, K toKey);

K, V> headMap(K
, V> tailMap(K fron

)

? super K> comparator();

mplementations

nlementations of each interface.

yle ations permit null elements, keys
nd values '

are Serializable, and all support a public clone
od

= Each one is unsynchronized

= If you need a synchronized collection, the
synchronization wrappers allow any collection
to be transformed into a synchronized collection

ashSet, TreeSet,
LinkedHashSet

purpose Set implementations are HashSet
inkedHashSet which is between them)

1shSet is muc out offers no ordering guarantees.

1-order iteration is important use TreeSet.

tion in HashSet is linear in the sum of the number of
ies and the capacity. It's important to choose an
opriate initial capacity if iteration performance is
important. The default initial capacity is 101. The initial
capacity may be specified using the int constructor. To
allocate a HashSet whose initial capacity is 17:

® Set s= new HashSet(17);

slementation
sarisons

HashSet
Storage Type ash Table

Performance i

Order of Iteration

ayList and LinkedList

1eral purpose List implementations are
inkedList . ArrayList offers constant time
positional access, and it's just plain fast, because it does
not have to allocate a node object for each element in the
ist, and it can take advantage of the native method
stem.arraycopy when it has to move multiple elements
once

ou frequently add elements to the beginning of the
List, or iterate over the List deleting elements from its
interior, you might want to consider LinkedList. These
operations are constant time in a LinkedList but linear
time in an ArrayList. Positional access is linear time in a
LinkedList and constant time in an ArrayList

ashMap, TreeMap,
LinkedHashMap

al purpose Map implementations
1 TreeMap.

d LinkedHash imilar to LinkedHashSet)

ituation for Map is exactly analogous to Set

u need SortedMap operations you should
eeMap; otherwise, use HashMap

USE

Collection Types

rrayList, me lered list of elements that are stored in an underlying array.

1s of Vector that adds methods to pus pop elements.

) ry
o the Map interface, although Dictionary is an abstract class, not an interface.
ble
- Analog HashMap.
Properties
m A subclass of Hashtable. Maintains a map of key/value pairs where the keys and values are strings. If
a key is not found in a properties object a “default” properties object can be searched.

General-purpo

array

he naming convention

LinkedList also implements queue and there is a PriorityQueue implementation (implemented with heap)

Implementations

plementations offers the strengths
of the underlying data structure.

1 for:

ashtable
izable array

edList
table plus LinkedList

= Think about these tradeoffs when selecting the
- implementation!

rdering and Sorting

s to define orders on objects.

Ine a natural order among its
enting the Comparable

_ S D
rface.

rary orders among different objects can be
led by comparators, classes that implement

the parator interface.

omparable Interface

e interface consists of a single method:

mparable<T> {

0);

~ public int compare

ompareTo method compares the receiving

with the specified object, and returns a negative
integer,; zero, or a positive integer as the receiving object
is less than, equal to, or greater than the specified
Object.

another interface (in addition to
Ided by the Java API which can
S.

) OI(C

an use this interfz 0 define an order thatis
1t from the Comparable (natural) order.

omparator

object that encapsulates an ordering. Like
face, the Comparator interface consists

blic interface Compa <T> {

ompare(T o1, T 02);

-

ompare method compares its two arguments,
returning a negative integer, zero, or a positive integer as the
first argument is less than, equal to, or greater than the
second.

&. Comparable

able<HDTV> {

e() { return size;}
etSize(int size) {this.size = size; }
etBrand() { return brand;}

tBrand(String brand) {this.brand = brand; }

1pareTo(HDTV tv) {

ize() > tv.getSize()) return 1;
setSize() < tv.getSize()) return -1;
“else return 0;

else if

_ode &. Comparable

1(String[] args) {

(55, "Samsung");

D, "Sony");
'‘Panasonic");
List<HDTV>();

V tv3 = new HDTV
ayList<HDTV> al = new
d(tvl);

1(tv2);

d(tv3);
ections.sort(al);

DTV a:al){
tem.out.println(a.getBrand());

dde &. Comparator

orand) {

VA
and = brand;

setSize() { return size;}
] setSize(int size) {this.size = size; }

ng getBrand() { return brand;}

] setBrand(String brand) {this.brand = brand; }

le @. Comparator

omparator<HDTV> {

2){

tv2Size) {

yrDescOrder implements Comparator<HDTV> {

int comp
return tv2.getBranc

}

DTV tvl, HDTV tv2) {
.compareTo(tvl.getBrand())

le @. Comparator

rgs) {
amsung");

y")

)

iC" ;

-
)

.sort(al, new SizeComparator());

fa:al){
out.println(a.getBrand());

®

Colle ort(al, new BrandComparatorDescOrder());
or (HDT){
System.out.println(a.getBrand());

ar implementations in the
API

mnentations delegate all their real work to a
1 but add (or remove) extra functionality
. ection offers.

Synchronization Wrappers
modifiable Wrappers

enience implementations are mini-implementations that
e more convenient and more efficient than

eral-purpose implementations when you don't need their
ower

View of an Array

Immutable Multiple-Copy List
Immutable Singleton Set

Empty Set, List, and Map Constants

YAY; C)

Ironization wrappers

appers add automatic synchronization
collection. There is one static factory method for
erfaces:

ic static Collection syn zedCollection(Collection c);

s);

tatic List synchronizedList(List list);

static Set synchronizedSet

static Map synchronizedMap(Map m);
atic SortedSet synchronizedSortedSet(SortedSet s);

IO ' DI
= public static SortedMap synchronizedSortedMap(SortedMap m);

Fach of these methods returns a synchronized (thread-safe) Collection backed
by the specified collection.

odifiable wrappers

vrappers take away the ability to modify the
epting all of the operations that would
10dify the collection, and throwing an
supportedOperationException. The unmodifiable
opers have two main uses:

nake a collection immutable once it has been built.

ow "second-class citizens" read-only access to your data
structures. You keep a reference to the backing collection, but
hand out a reference to the wrapper. In this way, the
second-class citizens can look but not touch, while you
maintain full access.

Jnmodifiable
vrappers(cont.)

“tory method for each of the six core

Colle odifiableCollection(Collection c);
static Set unmodifiable

Set s);
tatic List unmodifiableList(List list);
static Map unmodifiableMap(Map m);

public static SortedSet unmodifiableSortedSet(SortedSet s);
‘= public static SortedMap unmodifiableSortedMap(SortedMap m);

singleton

>Collections.singleton(T e) returns
ontaining only the element e

have a single element but you
ation

nandy w ‘
1d like to use a Set ¢

oveAll(Collections.singleton(e));
nove all occurrences of e from the Collection ¢

actions Toolbox

also provides polymorphic versions of algorithms

2Verse
copy

ng
v Search

ysition

‘ uency
| Di: t

m Finding
0 Min
0 Max

treme values

ncurrent Collections

aderHashMap An analog of java.util. Hashtable that
during updates.

An analog of java.util. Hashtable that allows
als and concurrent updates.

opyOnWriteArrayLis oy-on-write analog of java.util. ArrayList

) OnWriteArraySet A java.util.Set based on
/OnWriteArrayList.

ollection A wrapper class placing either Syncs or
dWriteLocks around java.util.Collection

Set A wrapper around java.util.Set

ortedSet A wrapper around java.util.SortedSet
SyncList A wrapper around java.util.List

SyncMap A wrapper around java.util.Map
SyncSortedMap A wrapper around java.util.SortedMap

N ® & &

oose which Java
1 class to use?

ich Java List to use?

Featt

ArrayList Allows elements to
by index.

Adding/removing the la

No in any way.

LinkedList i accessec

CopyOnWrite rr

hoose which Java
on class to use?

Which Java Set to use?

Ordering of keys No

No particular order ashSet

Sorted

Fixed

hoose which Java
on class to use?

hich Java Map to use?

Ordering of keys Non-cc

No particular orc

Sorted

rce Collections
aries In Java
Apache Common

Guava-libraries ogle Collections Library)
Trove high performance

The Mango \

estions

A W

D

