
Creative Commons
Attribution-NonCommercial-ShareAlike 2.5
License

Sakai Programmer's Café

Sakai Montreal CRIM Workshop

Introduction to
Spring Framework

 and Dependency Injection
Aaron Zeckoski

azeckoski@gmail.com

2

Spring Framework
• A popular and stable Java application

framework for enterprise development
– Ubiquitous for Java development
– Well established in enterprise Java apps
– Time tested and proven reliable

• A primary purpose is to reduce
dependencies and even introduce
negative dependencies
– Different from almost every other framework out there
– Part of the reason it has been adopted so quickly

URL: http://www.springframework.org/

3

Spring code structure

• Spring code base is proven to be well
structured (possibly the best)
– http://chris.headwaysoftware.com/2006/07/springs_structu.html

• Analysis using Structure 101

• 139 packages
• No dependency cycles

4

More Spring

• Considered an alternative / replacement
for the Enterprise JavaBean (EJB) model

• Flexible
– Programmers decide how to program

• Not exclusive to Java (e.g. .NET)
• Solutions to typical coding busywork

– JDBC
– LDAP
– Web Services

URL: http://en.wikipedia.org/wiki/Spring_framework

5

What does Spring offer?

• Dependency Injection
– Also known as IoC (Inversion of Control)

• Aspect Oriented Programming
– Runtime injection-based

• Portable Service Abstractions
– The rest of spring

• ORM, DAO, Web MVC, Web, etc.
• Allows access to these without knowing how they

actually work

6

Dependency Injection defined

• Method to create needed dependencies or look
them up somehow without doing it in the
dependent code
– Often called Inversion of Control (IoC)

• IoC injects needed dependencies into the object
instead
– Setters or Contructor

• Primary goal is reduction of dependencies in
code
– an excellent goal in any case
– This is the central part of Spring

URL: http://en.wikipedia.org/wiki/Inversion_of_Control

7

Aspect Oriented Programming
defined

• Attempts to separate concerns, increase
modularity, and decrease redundancy
– Separation of Concerns (SoC)

• Break up features to minimize overlap
– Don’t Repeat Yourself (DRY)

• Minimize code duplication
– Cross-Cutting Concerns

• Program aspects that affect many others (e.g. logging)

• AspectJ is the top AOP package
– Java like syntax, IDE integration

URL: http://en.wikipedia.org/wiki/Aspect-oriented_programming

8

Portable Service Abstractions
defined

• Services that easily move between
systems without heavy reworking
– Ideally easy to run on any system
– Abstraction without exposing service

dependencies
• LDAP access without knowing what LDAP is
• Database access without typical JDBC hoops

• Basically everything in Spring that is not
IoC or AOP

9

What is a bean?

• Typical java bean with a unique id
• In spring there are basically two types

– Singleton
• One instance of the bean created and referenced

each time it is requested
– Prototype (non-singleton)

• New bean created each time
• Same as new ClassName()

• Beans are normally created by Spring as
late as possible

10

What is a bean definition?

• Defines a bean for Spring to manage
– Key attributes

• class (required): fully qualified java class name
• id: the unique identifier for this bean
• configuration: (singleton, init-method, etc.)
• constructor-arg: arguments to pass to the constructor at

creation time
• property: arguments to pass to the bean setters at creation

time
• Collaborators: other beans needed in this bean (a.k.a

dependencies), specified in property or constructor-arg

• Typically defined in an XML file

11

Sample bean definition
<bean id="exampleBean" class=”org.example.ExampleBean">
 <property name="beanOne"><ref bean="anotherExampleBean"/></property>
 <property name="beanTwo"><ref bean="yetAnotherBean"/></property>
 <property name="integerProperty"><value>1</value></property>
</bean>

public class ExampleBean {
private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;
public void setBeanOne(AnotherBean beanOne) {

this.beanOne = beanOne; }
public void setBeanTwo(YetAnotherBean beanTwo) {

this.beanTwo = beanTwo; }
public void setIntegerProperty(int i) {

this.i = i; }
…

}

12

What is a bean factory?

• Often seen as an ApplicationContext
– BeanFactory is not used directly often
– ApplicationContext is a complete superset of bean

factory methods
• Same interface implemented
• Offers a richer set of features

• Spring uses a BeanFactory to create, manage
and locate “beans” which are basically instances
of a class
– Typical usage is an XML bean factory which allows

configuration via XML files

13

• Beans are created in order based on the dependency
graph
– Often they are created when the factory loads the definitions
– Can override this behavior in bean

<bean class=“className” lazy-init=“true” />
– You can also override this in the factory or context but this is not

recommended
• Spring will instantiate beans in the order required by

their dependencies
1. app scope singleton - eagerly instantiated at container startup
2. lazy dependency - created when dependent bean created
3. VERY lazy dependency - created when accessed in code

How are beans created?

14

How are beans injected?
• A dependency graph is constructed based

on the various bean definitions
• Beans are created using constructors

(mostly no-arg) or factory methods
• Dependencies that were not injected via

constructor are then injected using setters
• Any dependency that has not been

created is created as needed

15

Multiple bean config files
• There are 3 ways to load multiple bean config files

(allows for logical division of beans)
– Load multiple config files from web.xml
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:/WEB-INF/spring-config.xml,

classpath:/WEB-INF/applicationContext.xml</param-value>
</context-param>

– Use the import tag
<import resource="services.xml"/>

– Load multiple config files using Resources in the
application context constructor

• Recommended by the spring team
• Not always possible though
ClassPathXmlApplicationContext appContext = new
ClassPathXmlApplicationContext(new String[]
{"applicationContext.xml",
"applicationContext-part2.xml"});

16

Bean properties?
• The primary method of dependency injection
• Can be another bean, value, collection, etc.
<bean id="exampleBean" class="org.example.ExampleBean">
 <property name="anotherBean">

<ref bean="someOtherBean" />
 </property>
</bean>

• This can be written in shorthand as follows
<bean id="exampleBean" class="org.example.ExampleBean">
 <property name="anotherBean" ref="someOtherBean" />
</bean>

17

Anonymous vs ID
• Beans that do not need to be referenced

elsewhere can be defined anonymously
• This bean is identified (has an id) and can be

accessed to inject it into another bean

• This bean is anonymous (no id)
<bean class="org.example.ExampleBean">
 <property name="anotherBean" ref="someOtherBean" />
</bean>

<bean id="exampleBean" class="org.example.ExampleBean">
 <property name="anotherBean" ref="someOtherBean" />
</bean>

18

What is an inner bean?

• It is a way to define a bean needed by
another bean in a shorthand way
– Always anonymous (id is ignored)
– Always prototype (non-singleton)

<bean id="outer" class="org.example.SomeBean">
<property name="person">

<bean class="org.example.PersonImpl">
<property name="name"><value>Aaron</value></property>
<property name="age"><value>31</value></property>

</bean>
</property>

</bean>

19

Bean init-method
• The init method runs AFTER all bean

dependencies are loaded
– Constructor loads when the bean is first

instantiated
– Allows the programmer to execute code once all

dependencies are present

<bean id="exampleBean" class=”org.example.ExampleBean"
init-method=”init” />

public class ExampleBean {
public void init() {

// do something
}

}

20

Bean values
• Spring can inject more than just other beans
• Values on beans can be of a few types

– Direct value (string, int, etc.)
– Collection (list, set, map, props)
– Bean
– Compound property

<bean class="org.example.ExampleBean">
 <property name="email">

<value>azeckoski@gmail.com</value>
 </property>
</bean>

Example of injecting a string value

21

Abstract (parent) beans
• Allows definition of part of a bean which can

be reused many times in other bean
definitions

<bean id="abstractBean" abstract="true"
class="org.example.ParentBean">

 <property name="name" value="parent-AZ"/>
 <property name="age" value="31"/>
</bean>

<bean id="childBean"
class="org.example.ChildBean"
parent="abstractBean" init-method="init">

 <property name="name" value="child-AZ"/>
</bean>

▪The parent bean defines
2 values (name, age)
▪The child bean uses the
parent age value (31)
▪The child bean overrides
the parent name value
(from parent-AZ to
child-AZ)
▪Parent bean could not be
injected, child could

22

AOP in Spring
• Provides way to create declarative services

and custom aspects
• Transaction management is the most

common aspect (or concern)
• Spring handles AOP via advisors or

interceptors
– Interception point is a joinpoint
– A set of joinpoints are called a pointcut

• pointcuts are key to Spring AOP, they allow intercepts
without explicit knowledge of the OO hierarchy

– Action taken by an interceptor is called advice

23

AOP advice types

• Around
– Most common and powerful
– Execute code before and after joinpoint

• Before
– Executes before joinpoint, cannot stop execution

• Throws
– Executes code if exception is thrown

• After return
– Executes code after normal joinpoint execution

24

Spring AOP key points
• Pure java implementation
• Allows method interception

– No field or property intercepts yet
• AOP advice is specified using typical

bean definitions
– Closely integrates with Spring IoC

• Proxy based AOP
– J2SE dynamic proxies or CGLIB proxies

• Not a replacement for AspectJ

25

Example transaction proxy

<bean id="daoBeanTarget" class="org.example.dao.impl.DaoImpl">
<property name="sessionFactory"><ref bean="mySessionFactory"/></property>
</bean>

<bean id="daoBean"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="target" ref="daoBeanTarget"/>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

• This wraps a transaction interceptor around a DAO

26

Working example

• Let’s look at some example code pre and
post spring
– Simple application that allows a user to add,

remove, and list a set of strings
• Pre spring code

– Programmers Cafe - Example App
• Post spring code

– Programmers Cafe - Example App Spring

27

Example App

• The example app is a simple command
line Java app which is meant to
demonstrate a reasonable dependency
structure

• This app allows a user to save, delete,
and list a set of strings associated with
their username

28

Example App Structure

• Alpha is the main class
• Bravo handles user

interaction
• Charlie handles

application logic
• Delta handles data

access
• Dependency graph is

non-cyclical
– No A => B => C => A

Alpha

Charlie

Bravo

Delta

A B = A depends on B

DeltaImpl

29

Non-spring version

• Involves using new to create needed
dependencies

• Each class must know about the
dependencies that it needs

• Singletons have to be created and handed to
the classes that need them at the same time
or you need a static way to access them (or a
framework)

• Tightly coupled code structure

30

Spring version

• No more new use
• Classes only have to know about the

interface
– or class if no interface available

• Singletons easy to handle
• Loose coupling allows flexible changes

31

Questions?

• Spring framework
– http://www.springframework.org/

