Hash Tables

SDP-4

Dictionary

0 Dictionary:
Dynamic-set data structure for storing items indexed using keys.
Supports operations Insert, Search, and Delete.

Applications:
Symbol table of a compiler.
Memory-management tables in operating systems.
Large-scale distributed systems.

0 Hash Tables:

Effective way of implementing dictionaries.
Generalization of ordinary arrays.

Direct-address Tables

1 Direct-address Tables are ordinary arrays.

0 Facilitate direct addressing.

Element whose key is k is obtained by indexing into the K" position
of the array.

[when we can afford to allocate an array with one
position for every possible key.

l.e.
1 Dictionary operations can be implemented to take O(|) time.

Details in Sec. | I.1.

Hash Tables
0 Notation:
UJ — Universe of all possible keys.
K — Set of keys actually stored in the dictionary.
K| = n.
0 When U is very large,
Arrays are not practical.
K] << |U]
1 Use a table of size proportional to |K| — The hash tables.

However, we lose the direct-addressing ability.

Define functions that map keys to slots of the hash table.

Hashing

1 Hash function h: Mapping from U to the slots of a hash table
T70..m—1].

1 With arrays, key k maps to slot A[K].
1 With hash tables, key k maps or “hashes” to slot T[h[K]].
[l h[K] is the hash value of key k.

Hashing

U

(universe of keys)

TN
/ COIISTOIT ™

hk,)

h(k,)

h(k,)=h(ks)

h(k;)

m—1

[ssues with Hashing

1 Multiple keys can hash to the same slot — collisions are

possible.
Design hash functions such that collisions are minimized.

But avoiding collisions is impossible.
Design collision-resolution techniques.
0 Search will cost ©(n) time in the worst case.
However, all operations can be made to have an expected
complexity of ©(1).

Methods of Resolution

0 Chaining:
Store all elements that hash to the same slotina [,
linked list. ZI/_'l [RaRe
Store a pointer to the head of the linked list in 55;—4 I3[
the hash table slot. + A4 A

T4/

0 Open Addressing: —
All elements stored in hash table itself.
When collisions occur, use a systematic 1;
(consistent) procedure to store elements in free b
slots of the table. /

vy

|
V[¥
|

_l|v
NAA);

Collision Resolution by Chaining

U

(universe of keys)

kJ -

K o’

(actual £ % o

keys) 5

h(k)=h(k,)

h(k,y=h(k)=h(k)

h(ky)=h(k;)
h(k,)

m—1

Collision Resolution by Chaining

U

(universe of keys)

k
d %
K ot

(actual £ % o

keys) ks

NN NN

X2

\

Ll

Hashing with Chaining

Dictionary Operations:

0 Chained-Hash-Insert (7, x)
Insert x at the head of list T[h(key[x])].
Worst-case complexity — O(1).

0 Chained-Hash-Delete (1, x)

Delete x from the list T]h(key[x])].

Worst-case complexity — proportional to length of list with
singly-linked lists. O(1) with doubly-linked lists.

0 Chained-Hash-Search (T, k)
Search an element with key k in list TTh(k)].
Worst-case complexity — proportional to length of list.

Analysis on Chained-Hash-Search

0 Load factor = average keys per slot.
m — number of slots.
n — number of elements stored in the hash table.

1 Worst-case complexity: ©(n) + time to compute h(k).

0 Average depends on how h distributes keys among m slots.
0 Assume

Any key is equally likely to hash into any of the m slots, independent of
where any other key hashes to.

1 Time to search for an element with key kis &(| TTh(k)]|).
1 Expected length of a linked list = load factor = a = n/m.

Expected Cost of an Unsuccessful Search

Theorem:
An unsuccessful search takes expected time O(1+a).

1 Any key not already in the table is equally likely to hash to
any of the m slots.

1 To search unsuccessfully for any key k, need to search to
the end of the list T[h(k)], whose expected length is a.

1 Adding the time to compute the hash function, the total
time required is O(1+q).

Expected Cost of a Successful Search

Theorem:
A successful search takes expected time O(1+a).

0 The probability that a list is searched is proportional to the number of
elements it contains.

1 Assume that the element being searched for is equally likely to be any of
the n elements in the table.

| more than the number of elements that appear before x in
X’s list.

These are the after x was inserted.

0 Goal:
the average, over the n elements x in the table, of

Expected Cost of a Successful Search

Theorem:
A successful search takes expected time O(1+a).

0 Let x be the " element inserted into the table, and let k = key[x].

1 Define indicator random variables Xij = {h(k) = h(I<j)}, for all i, j.
0 Simple uniform hashing = Pr{h(k) = h(kj)} = 1/m
= E[X]] = l/m.
I
fihoz)
noin j=i+]

No. of elements inserted after X. into the same slot as xi'

Proof — Contd.
E{lz[lzxﬂ

ISl Sy,]] (linearity of expectation)
nig

J=i+l

Expected total time for a successful search
= Time to compute hash function + Time
a a to search

Expected Cost — Interpretation

1 If n= O(m), then a=n/m = O(m)/m = O(l).
—

1 Insertion is O(l) in the worst case.

1 Deletion takes O(1) worst-case time when lists are
doubly linked.

0 Hence, all dictionary operations take O(l) time on
average with hash tables with chaining.

Good Hash Functions

0 Satisfy the assumption of
Not possible to satisfy the assumption in practice.

1 Often use heuristics, based on the domain of the keys, to
create a hash function that performs well.

0 Regularity in key distribution should not affect uniformity.
Hash value should be independent of any patterns that might
exist in the data.

E.g. Each key is drawn independently from U according to a
probability distribution P:

Y enp =; PR = 1/m forj=0,1,... ,m-I.

An example is the division method.

Keys as Natural Numbers

1 Hash functions assume that the keys are natural numbers.

1 When they are not, have to interpret them as natural
numbers.
1 Example: Interpret a character string as an integer expressed
in some radix notation. Suppose the string is CLRS:
ASCII values: C=67,L=76,R=82, S=83.
There are 128 basic ASCII values.
So, CLRS = 67 128°+76 -128%+ 82:128'+ 83 -128°
= 141,764,947.

Division Method

1 Map a key k into one of the m slots by taking the
remainder of k divided by m. That is,

h(k) = k mod m
[m =31 and k=78 = h(k) = 16.
0 Advantage: Fast, since requires just one division
operation.

0 Disadvantage: Have to avoid certain values of m.
Don’t pick certain values, such as m=2°
Or hash won’t depend on all bits of k.

0 Good choice for m:
Primes, not too close to power of 2 (or 10) are good.

Multiplication Method

110 <A<I, h(kf=|m(kAmod |)| =|m (kA —|KA)) |
where kA mod | means the fractional part of kA, i.e., kA
— [KA].

1 Disadvantage: Slower than the division method.

1 Advantage: Value of m is not critical.

Typically chosen as a power of 2,i.e., m = 2P, which makes
implementation easy.

1 m = 1000, k = 123,A = 0.6180339887...
h(k) =|1000(123 -0.6180339887 mod)]
= 1000 -0.018169... | = I8.

Multiplication Mthd. — Implementation

1 Choose m = 27, for some integer p.

1 Let the word size of the machine be w bits.

1 Assume that k fits into a single word. (k takes w bits.)
1 Let 0 < s< 2" (stakes w bits.)

1 Restrict A to be of the form s/2".

I Letkxs=r 2"+r,.

0
0 r, holds the integer part of kA (| kA|) and r, holds the fractional

part of kA (kA mod | = kA — | kA)).
1 WVe don’t care about the integer part of KA.

So, just use r,and forget about r,.

Multiplication Mthd — Implementation

w bits
1 : \
k
binary point X s=A4-2"
r B 7,
‘ ' ' extract p bits
h(k)

1 We want | m (kA mod I)|.We could get that by shifting r, to the

left by p = Ig m bits and then taking the p bits that were shifted to
the left of the binary point.

1 But, we don’t need to shift. Just take the p most significant bits of

I”O.

How to choose A?

1 Another example: On board.
0 How to choose A?

The multiplication method works with any legal value of A.

But it works better with some values than with others, depending
on the keys being hashed.

Knuth suggests using A = (V5 — 1)/2.

