Hash Tables

SDP-4

Dictionary

Dictionary:

- Dynamic-set data structure for storing items indexed using keys.
- Supports operations Insert, Search, and Delete.
- Applications:
 - Symbol table of a compiler.
 - Memory-management tables in operating systems.
 - Large-scale distributed systems.

Hash Tables:

- Effective way of implementing dictionaries.
- Generalization of ordinary arrays.

Direct-address Tables

- Direct-address Tables are ordinary arrays.
- Facilitate direct addressing.
 - \Box Element whose key is k is obtained by indexing into the k^{th} position of the array.
- Applicable when we can afford to allocate an array with one position for every possible key.
 - \square i.e. when the universe of keys U is small.
- \square Dictionary operations can be implemented to take O(1) time.
 - Details in Sec. 11.1.

Hash Tables

Notation:

- \Box U Universe of all possible keys.
- \square K Set of keys actually stored in the dictionary.
- |K| = n.
- When U is very large,
 - Arrays are not practical.
 - $|K| \ll |U|$
- \square Use a table of size proportional to |K| The hash tables.
 - However, we lose the direct-addressing ability.
 - Define functions that map keys to slots of the hash table.

Hashing

□ Hash function h: Mapping from U to the slots of a hash table T[0..m-1].

```
h: U \rightarrow \{0,1,\ldots,m-1\}
```

- \square With arrays, key k maps to slot A[k].
- □ With hash tables, key k maps or "hashes" to slot T[h[k]].
- \Box h[k] is the *hash value* of key k.

Hashing

Issues with Hashing

- Multiple keys can hash to the same slot collisions are possible.
 - Design hash functions such that collisions are minimized.
 - But avoiding collisions is impossible.
 - Design collision-resolution techniques.
- \square Search will cost $\Theta(n)$ time in the worst case.
 - I However, all operations can be made to have an expected complexity of $\Theta(1)$.

Methods of Resolution

Chaining:

- Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.

Open Addressing:

- All elements stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Collision Resolution by Chaining

Collision Resolution by Chaining

Hashing with Chaining

Dictionary Operations:

- \Box Chained-Hash-Insert (T, x)
 - Insert x at the head of list T[h(key[x])].
 - □ Worst-case complexity -O(1).
- ☐ Chained-Hash-Delete (*T, x*)
 - Delete x from the list T[h(key[x])].
 - Under Worst-case complexity proportional to length of list with singly-linked lists. O(1) with doubly-linked lists.
- ☐ Chained-Hash-Search (*T, k*)
 - □ Search an element with key k in list T[h(k)].
 - Worst-case complexity proportional to length of list.

Analysis on Chained-Hash-Search

- □ Load factor a=n/m = average keys per slot.
 - \square m number of slots.
 - \square n number of elements stored in the hash table.
- □ Worst-case complexity: $\Theta(n)$ + time to compute h(k).
- \square Average depends on how h distributes keys among m slots.
- Assume
 - Simple uniform hashing.
 - Any key is equally likely to hash into any of the *m* slots, independent of where any other key hashes to.
 - \square O(1) time to compute h(k).
- □ Time to search for an element with key k is $\Theta(|T[h(k)]|)$.
- □ Expected length of a linked list = load factor = $\alpha = n/m$.

Expected Cost of an Unsuccessful Search

Theorem:

An unsuccessful search takes expected time $\Theta(1+\alpha)$.

Proof:

- Any key not already in the table is equally likely to hash to any of the m slots.
- □ To search unsuccessfully for any key k, need to search to the end of the list T[h(k)], whose expected length is α.
- \square Adding the time to compute the hash function, the total time required is $\Theta(1+\alpha)$.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.

Proof:

- The probability that a list is searched is proportional to the number of elements it contains.
- Assume that the element being searched for is equally likely to be any of the n elements in the table.
- The number of elements examined during a successful search for an element x is I more than the number of elements that appear before x in x's list.
 - These are the elements inserted after x was inserted.
- ☐ Goal:
 - Find the average, over the *n* elements *x* in the table, of how many elements were inserted into *x*'s list after *x* was inserted.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.

Proof (contd):

- Let x_i be the i^{th} element inserted into the table, and let $k_i = key[x_i]$.
- Define indicator random variables $X_{ij} = \{h(k_i) = h(k_j)\}$, for all i, j.
- ☐ Simple uniform hashing $\Rightarrow \Pr\{h(k_i) = h(k_j)\} = 1/m$ $\Rightarrow E[X_{ij}] = 1/m$.
- Expected number of elements examined in a successful search is:

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

No. of elements inserted after x_i into the same slot as x_i .

Proof - Contd.

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E[X_{ij}]\right)$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$=1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$=1+\frac{1}{nm}\left(n^{2}-\frac{n(n+1)}{2}\right)$$

$$=1+\frac{n-1}{2m}$$

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}$$

(linearity of expectation)

Expected total time for a successful search

- = Time to compute hash function + Time to search
- $= O(2+\alpha/2 \alpha/2n) = O(1+\alpha).$

Expected Cost – Interpretation

- If n = O(m), then a=n/m = O(m)/m = O(1).
 - ⇒ Searching takes constant time on average.
- \square Insertion is O(1) in the worst case.
- Deletion takes O(1) worst-case time when lists are doubly linked.
- \square Hence, all dictionary operations take O(1) time on average with hash tables with chaining.

Good Hash Functions

- Satisfy the assumption of simple uniform hashing.
 - Not possible to satisfy the assumption in practice.
- Often use heuristics, based on the domain of the keys, to create a hash function that performs well.
- Regularity in key distribution should not affect uniformity. Hash value should be independent of any patterns that might exist in the data.
 - \square E.g. Each key is drawn independently from U according to a probability distribution P:

$$\sum_{k:h(k)=j} P(k) = 1/m$$
 for $j = 0, 1, ..., m-1$.

An example is the division method.

Keys as Natural Numbers

- Hash functions assume that the keys are natural numbers.
- When they are not, have to interpret them as natural numbers.
- Example: Interpret a character string as an integer expressed in some radix notation. Suppose the string is CLRS:
 - ASCII values: C=67, L=76, R=82, S=83.
 - □ There are 128 basic ASCII values.
 - So, CLRS = $67 \cdot 128^3 + 76 \cdot 128^2 + 82 \cdot 128^1 + 83 \cdot 128^0$ = 141,764,947.

Division Method

 $\ \square$ Map a key k into one of the m slots by taking the remainder of k divided by m. That is,

$$h(k) = k \mod m$$

- \square Example: m = 31 and $k = 78 \Rightarrow h(k) = 16$.
- Advantage: Fast, since requires just one division operation.
- Disadvantage: Have to avoid certain values of m.
 - Don't pick certain values, such as $m=2^p$
 - Or hash won't depend on all bits of k.
- Good choice for m:
 - Primes, not too close to power of 2 (or 10) are good.

Multiplication Method

- If 0 < A < I, $h(k) = \lfloor m (kA \mod I) \rfloor = \lfloor m (kA \lfloor kA \rfloor) \rfloor$ where $kA \mod I$ means the fractional part of kA, i.e., $kA \lfloor kA \rfloor$.
- Disadvantage: Slower than the division method.
- Advantage: Value of m is not critical.
 - Typically chosen as a power of 2, i.e., $m = 2^p$, which makes implementation easy.
- □ Example: $m = 1000, k = 123, A \approx 0.6180339887...$ $h(k) = [1000(123 \cdot 0.6180339887 \mod 1)]$ $= [1000 \cdot 0.018169...] = 18.$

Multiplication Mthd. - Implementation

- □ Choose $m = 2^p$, for some integer p.
- Let the word size of the machine be w bits.
- \square Assume that k fits into a single word. (k takes w bits.)
- \Box Let $0 < s < 2^w$. (s takes w bits.)
- \square Restrict A to be of the form $s/2^w$.
- $\Box \text{ Let } k \times s = r_1 \cdot 2^w + r_0.$
- Γ_1 holds the integer part of $kA(\lfloor kA \rfloor)$ and r_0 holds the fractional part of $kA(kA \mod 1 = kA \lfloor kA \rfloor)$.
- \square We don't care about the integer part of kA.
 - \square So, just use r_0 , and forget about r_1 .

Multiplication Mthd - Implementation

- We want $[m (kA \mod I)]$. We could get that by shifting r_0 to the left by $p = \lg m$ bits and then taking the p bits that were shifted to the left of the binary point.
- But, we don't need to shift. Just take the p most significant bits of r_{0} .

How to choose *A*?

- Another example: On board.
- ☐ How to choose *A*?
 - The multiplication method works with any legal value of A.
 - But it works better with some values than with others, depending on the keys being hashed.
 - □ Knuth suggests using $A \approx (\sqrt{5} 1)/2$.

