Binary Search Trees

SDP4

Binary Trees

Binary tree is
a root

left subtree (maybe empty) @
right subtree (maybe empty)

Properties @ ®/QD\
max # of leaves:
max # of nodes: @
average depth for N nodes:

Representation: Data @ @

1 I/ M.
ICIL Trignt
pointe | pointe

1 1

j I

Binary Search Trees

Binary Tree Representation

- Arigh
l\al'l. t
chil | hit
/ (\
® ©
e Bl‘igh o Crigh v

TCTt ICLL
) t) t
Ch,ﬂ chil ‘*?1 chil @ @ F

left Dl‘igh 1afe Erigh 1At F righ
' t l\al'l. t l\al'l. t
Cl’ill chil chil chil C}?l chil

[]

I|v\§d
lw/”
=

Binary Search Trees

Dictionary ADT

Dictionary operations insert
Roller-blade demon

create 133t

haxtor
destroy ot gury
insert
find find()
n Roller-blade Older than dirt
delete deimion

Stores values associated with user-specified

values may be any (homogeneous) type

may be any (homogeneous) comparable
type

Binary Search Trees

Dictionary ADT:
Used Everywhere

Arrays

Sets
Dictionaries
Router tables
Page tables
Symbol tables
C++ structures

O O o o o o &Oo O

Anywhere we need to things fast based on a

Binary Search Trees

Search ADT

Dictionary operations insert
create
destroy
insert
find
delete

find()

Stores only the

keys may be any (homogenous) comparable
quickly tests for membership

Simplified dictionary, useful for examples (e.g. CSE 326)

Binary Search Trees

Dictionary Data Structure:
Requirements

1 Fast insertion

1 Fast searching

1 Fast deletion

Binary Search Trees

Naive Implementations

unsorted sorted linked list
array array
insert O(n) find + O(n) |O(1)
find O(n) O(log n) O(n)
delete find + O(1) (find + O(1) |find + O(1)

Binary Search Trees

Binary Search Tree
Dictionary Data Structure

Binary tree property
each node has < 2 children
result:
storage is small
operations are simple
average depth is small
Search tree property

all keys in left subtree smaller than
root’s key

all keys in right subtree larger than
root’s key

result:
easy to find any given key

Insert/delete by changing links

Binary Search Trees

Example and Counter-Example

BINARY SEARCH TREE BINARY SEARCH TREE

Binary Search Trees

Complete Binary Search Tree

Complete binary search tree
(aka):
Links are completely filled,

except possibly bottom level,
which is filled left-to-right.

Binary Search Trees

In-Order Traversal

N

In order listing:

—10—

visit left subtree
visit node

visit right subtree

What does this guarantee
with a BST?

Binary Search Trees

Recursive Find

Node *
6 find (Comparable key, Node * t)

{
g g if (t == NULL) return t;
else if (key < t->key)
return find(key, t->left);
<:> else if (key > t->key)
return find(key, t->right);

Runtime: else
Best-worse case? return t;
Worst-worse case? }
f(depth)?

Binary Search Trees

[terative Find

Node *
find (Comparable key, Node * t)
{
while (t != NULL && t->key != key)
{
if (key < t->key)
t = t->left;
else
t = t->right;

return t;

Binary Search Trees

Insert

Concept:
Proceed down tree
as in Find
If new key not
found, then insert a
new node at last
spot traversed

void
insert (Comparable x, Node * t)

{
if (t == NULL) {

t = new Node (x) ;

} else if (x < t->key) {
insert(x, t->left);

} else if (x > t->key) {
insert(x, t->right);

} else {

// duplicate
// handling is app-dependent

Binary Search Trees

BuildTree for BSTs

1 Suppose the data 1,2, 3,4,5,6,7,8,9 is inserted into an
initially empty BST:

in order

in reverse order

median first, then left median, right median, etc.

Binary Search Trees

Analysis of BuildTree

Worst case is O(n?)
| +2+3+...+n = O(n?

Average case assuming all orderings equally likely:
O(n log n)
averaging over all insert sequences (not over all binary trees)

equivalently: average depth of a node is log n

proof: see Introduction to Algorithms, Cormen, Leiserson, & Rivest

Binary Search Trees

BST Bonus:
FindMin, FindMax

1 Find

1 Find maximum

Binary Search Trees

Successor Node

node
in

Node * succ(Node * t) {
if (t->right == NULL)
return NULL;
else
return min (t->right) ;

How many children can the successor of a node have?

Binary Search Trees

Predecessor Node

node
IN

Node * pred(Node * t) {
if (t->left == NULL)
return NULL;
else
return max (t->left);

Binary Search Trees

Deletion

Binary Search Trees

Lazy Deletion

Instead of physically deleting nodes, just
mark them as deleted

0 simpler

0 physical deletions done in batches

0 some adds just flip deleted flag

Binary Search Trees

Lazy Deletion

Delete(17)
Delete(15)
Delete(5)
Find(9)

Find(16)

Insert(5)

Find(17)

Binary Search Trees

Deletion - Leat Case

Delete(17)

Binary Search Trees

Deletion - One Child Case

Delete(15)

Binary Search Trees

Deletion - Two Child Case

Replace node with descendant

whose value is to
be between left and right
subtrees: the

6

Delete(5) @

Could we have used instead?

Binary Search Trees

Delete Code

void delete (Comparable key, Node *& root) {
Node *& handle (find (key, root))
Node * toDelete = handle;
if (handle !'= NULL) {
if (handle->left == NULL) { // Leaf or one child
handle = handle->right;
delete toDelete;
} else if (handle->right == NULL) { // One child
handle = handle->left;
delete toDelete;
} else { // Two children
successor = succ(root) ;
handle->data = successor->data;
delete (successor->data, handle->right) ;

Binary Search Trees

Thinking about
Binary Search Trees

Observations

Each operation views two new elements at a time
Elements (even siblings) may be scattered in memory

Binary search trees are fast if they're shallow

Realities

For large data sets, disk accesses dominate runtime

Some deep and some shallow BSTs exist for any data

Binary Search Trees

Beauty is Only ®(log n) Deep

Binary Search Trees are fast if they’re shallow:
perfectly complete
complete — possibly missing some “fringe” (leaves)

any other good cases!?

What matters!?
Problems occur when one branch is than another

i.e. when tree is

Binary Search Trees

Dictionary Implementations

unsorted sorted linked BST
array array list
insert |O(n) find + O(n) |O(1) O(Depth)
find |[O(n) O(log n) O(n) O(Depth)
delete | find + O(1) |find + O(1) |find + O(1) | O(Depth)

BST’s looking good for shallow trees, i.e. if Depth is small (log n);
otherwise as bad as a linked list!

Binary Search Trees

Digression: Tail Recursion

1 Tail recursion: when the tail (final operation) of a function
recursively calls the function

1 Why is tail recursion especially bad with a linked list?

1 Why might it be a lot better with a tree! Why might it
not!

Binary Search Trees

Making Trees Efficient:
Possible Solutions

Keep BSTs shallow by maintaining “balance”
AVL trees

... also exploit most-recently-used (mru) info
Splay trees

Reduce disk access by increasing branching factor

B-trees

Binary Search Trees

