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Binary Trees

Binary tree is
a root

left subtree (maybe empty) @
right subtree (maybe empty)

Properties @ ®/QD\
max # of leaves:
max # of nodes: @
average depth for N nodes:

Representation: Data @ @
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Binary Tree Representation
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Dictionary ADT

Dictionary operations insert
Roller-blade demon

create 133t

haxtor
destroy ot gury
insert
find find( )
n Roller-blade Older than dirt
delete deimion

Stores values associated with user-specified

values may be any (homogeneous) type

may be any (homogeneous) comparable
type
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Dictionary ADT:
Used Everywhere

Arrays

Sets
Dictionaries
Router tables
Page tables
Symbol tables
C++ structures

O O o o o o &Oo O

Anywhere we need to things fast based on a

Binary Search Trees



Search ADT

Dictionary operations insert
create
destroy
insert
find
delete

find( )

Stores only the

keys may be any (homogenous) comparable
quickly tests for membership

Simplified dictionary, useful for examples (e.g. CSE 326)
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Dictionary Data Structure:
Requirements

1 Fast insertion

1 Fast searching

1 Fast deletion
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Naive Implementations

unsorted sorted linked list
array array
insert O(n) find + O(n) |O(1)
find O(n) O(log n) O(n)
delete find + O(1) (find + O(1) |find + O(1)
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Binary Search Tree
Dictionary Data Structure

Binary tree property
each node has < 2 children
result:
storage is small
operations are simple
average depth is small
Search tree property

all keys in left subtree smaller than
root’s key

all keys in right subtree larger than
root’s key

result:
easy to find any given key

Insert/delete by changing links
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Example and Counter-Example

BINARY SEARCH TREE BINARY SEARCH TREE
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Complete Binary Search Tree

Complete binary search tree
(aka ):
Links are completely filled,

except possibly bottom level,
which is filled left-to-right.
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In-Order Traversal

N

In order listing:

—10—

visit left subtree
visit node

visit right subtree

What does this guarantee
with a BST?
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Recursive Find

Node *
6 find (Comparable key, Node * t)

{
g g if (t == NULL) return t;
else if (key < t->key)
return find(key, t->left);
<:> else if (key > t->key)
return find(key, t->right);

Runtime: else
Best-worse case? return t;
Worst-worse case? }
f(depth)?
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[terative Find

Node *
find (Comparable key, Node * t)
{
while (t != NULL && t->key != key)
{
if (key < t->key)
t = t->left;
else
t = t->right;

return t;
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Insert

Concept:
Proceed down tree
as in Find
If new key not
found, then insert a
new node at last
spot traversed

void
insert (Comparable x, Node * t)

{
if ( t == NULL ) {

t = new Node (x) ;

} else if (x < t->key) {
insert( x, t->left );

} else if (x > t->key) {
insert( x, t->right );

} else {

// duplicate
// handling is app-dependent
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BuildTree for BSTs

1 Suppose the data 1,2, 3,4,5,6,7,8,9 is inserted into an
initially empty BST:

in order

in reverse order

median first, then left median, right median, etc.
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Analysis of BuildTree

Worst case is O(n?)
| +2+3+...+n = O(n?

Average case assuming all orderings equally likely:
O(n log n)
averaging over all insert sequences (not over all binary trees)

equivalently: average depth of a node is log n

proof: see Introduction to Algorithms, Cormen, Leiserson, & Rivest

Binary Search Trees



BST Bonus:
FindMin, FindMax

1 Find

1 Find maximum
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Successor Node

node
in

Node * succ(Node * t) {
if (t->right == NULL)
return NULL;
else
return min (t->right) ;

How many children can the successor of a node have?
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Predecessor Node

node
IN

Node * pred(Node * t) {
if (t->left == NULL)
return NULL;
else
return max (t->left);
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Deletion
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Lazy Deletion

Instead of physically deleting nodes, just
mark them as deleted

0 simpler

0 physical deletions done in batches

0 some adds just flip deleted flag
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Lazy Deletion

Delete(17)
Delete(15)
Delete(5)
Find(9)

Find(16)

Insert(5)

Find(17)
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Deletion - Leat Case

Delete(17)
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Deletion - One Child Case

Delete(15)
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Deletion - Two Child Case

Replace node with descendant

whose value is to
be between left and right
subtrees: the

6

Delete(5) @

Could we have used instead?
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Delete Code

void delete (Comparable key, Node *& root) {
Node *& handle (find (key, root))
Node * toDelete = handle;
if (handle !'= NULL) {
if (handle->left == NULL) { // Leaf or one child
handle = handle->right;
delete toDelete;
} else if (handle->right == NULL) { // One child
handle = handle->left;
delete toDelete;
} else { // Two children
successor = succ(root) ;
handle->data = successor->data;
delete (successor->data, handle->right) ;

Binary Search Trees



Thinking about
Binary Search Trees

Observations

Each operation views two new elements at a time
Elements (even siblings) may be scattered in memory

Binary search trees are fast if they're shallow

Realities

For large data sets, disk accesses dominate runtime

Some deep and some shallow BSTs exist for any data
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Beauty is Only ®(log n) Deep

Binary Search Trees are fast if they’re shallow:
perfectly complete
complete — possibly missing some “fringe” (leaves)

any other good cases!?

What matters!?
Problems occur when one branch is than another

i.e. when tree is
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Dictionary Implementations

unsorted sorted linked BST
array array list
insert |O(n) find + O(n) |O(1) O(Depth)
find |[O(n) O(log n) O(n) O(Depth)
delete | find + O(1) |find + O(1) |find + O(1) | O(Depth)

BST’s looking good for shallow trees, i.e. if Depth is small (log n);
otherwise as bad as a linked list!
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Digression: Tail Recursion

1 Tail recursion: when the tail (final operation) of a function
recursively calls the function

1 Why is tail recursion especially bad with a linked list?

1 Why might it be a lot better with a tree! Why might it
not!
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Making Trees Efficient:
Possible Solutions

Keep BSTs shallow by maintaining “balance”
AVL trees

... also exploit most-recently-used (mru) info
Splay trees

Reduce disk access by increasing branching factor

B-trees
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