
Binary Search Trees

SDP4

Binary Trees

Binary Search Trees

Binary tree is
� a root
� left subtree (maybe empty)
� right subtree (maybe empty)

Properties
� max # of leaves:
� max # of nodes:
� average depth for N nodes:

Representation:

A

B

D E

C

F

HG

JIData
right

pointe
r

left
pointe

r

Binary Tree Representation

Binary Search Trees

Arigh
t

chil
d

left
chil
d

A

B

D E

C

F
Brigh

t
chil
d

left
chil
d

Crigh
t

chil
d

left
chil
d

Drigh
t

chil
d

left
chil
d

Erigh
t

chil
d

left
chil
d

Frigh
t

chil
d

left
chil
d

Dictionary ADT

Binary Search Trees

Dictionary operations
� create
� destroy
� insert
� find
� delete

Stores values associated with user-specified
keys

� values may be any (homogeneous) type
� keys may be any (homogeneous) comparable

type

Adrien
Roller-blade demon

Hannah
C++ guru

Dave
Older than dirt

…

insert

find(Adrien) Adrien
 Roller-blade
demon

 Donald
 l33t
haxtor

Dictionary ADT:
Used Everywhere

Binary Search Trees

� Arrays
� Sets
� Dictionaries
� Router tables
� Page tables
� Symbol tables
� C++ structures
� …

Anywhere we need to find things fast based on a key

Search ADT

Binary Search Trees

Dictionary operations
� create
� destroy
� insert
� find
� delete

Stores only the keys
� keys may be any (homogenous) comparable
� quickly tests for membership

Simplified dictionary, useful for examples (e.g. CSE 326)

Adrien
Hannah
Dave
…

insert

find(Adrien)
Adrien

 Donald

Dictionary Data Structure:
Requirements

Binary Search Trees

� Fast insertion
� runtime:

� Fast searching
� runtime:

� Fast deletion
� runtime:

Naïve Implementations

Binary Search Trees

unsorted
array

sorted
array

linked list

insert O(n) find + O(n) O(1)

find O(n) O(log n) O(n)

delete find + O(1)
(mark-as-deleted)

find + O(1)
(mark-as-deleted)

find + O(1)

Binary Search Tree
Dictionary Data Structure

Binary Search Trees

Binary tree property
� each node has ≤ 2 children
� result:

� storage is small
� operations are simple
� average depth is small

Search tree property
� all keys in left subtree smaller than

root’s key
� all keys in right subtree larger than

root’s key
� result:

� easy to find any given key
� Insert/delete by changing links

4

1
2

1
062

1
15

8

1
4
1
3

7 9

Example and Counter-Example

Binary Search Trees

3

1
171

84

5

4

1
8

1
062

1
15

8

2
0
2
1BINARY SEARCH TREE

NOT A
BINARY SEARCH TREE

7

1
5

Complete Binary Search Tree

Binary Search Trees

Complete binary search tree
(aka binary heap):

� Links are completely filled,
except possibly bottom level,
which is filled left-to-right.

7
1
793

1
55

8

1 4 6

In-Order Traversal

Binary Search Trees

visit left subtree
visit node
visit right subtree

What does this guarantee
with a BST?

2
092

1
55

1
0

3
07 1

7
In order listing:
2→5→7→9→10→15→17→20→3
0

Recursive Find

Binary Search Trees

Node *
find(Comparable key, Node * t)
{
 if (t == NULL) return t;
 else if (key < t->key)
 return find(key, t->left);
 else if (key > t->key)
 return find(key, t->right);
 else
 return t;
}

2
092

1
55

1
0

3
07 1

7

Runtime:
Best-worse case?
Worst-worse case?
f(depth)?

Iterative Find

Binary Search Trees

Node *
find(Comparable key, Node * t)
{
 while (t != NULL && t->key != key)
 {
 if (key < t->key)
 t = t->left;
 else
 t = t->right;
 }

 return t;
}

2
092

1
55

1
0

3
07 1

7

Insert

Binary Search Trees

void
insert(Comparable x, Node * t)
{
 if (t == NULL) {
 t = new Node(x);

 } else if (x < t->key) {
 insert(x, t->left);

 } else if (x > t->key) {
 insert(x, t->right);

 } else {
 // duplicate
 // handling is app-dependent
}

Concept:
▪ Proceed down tree
as in Find
▪ If new key not
found, then insert a
new node at last
spot traversed

BuildTree for BSTs

Binary Search Trees

� Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an
initially empty BST:
� in order

� in reverse order

� median first, then left median, right median, etc.

Analysis of BuildTree

Binary Search Trees

Worst case is O(n2)

1 + 2 + 3 + … + n = O(n2)

Average case assuming all orderings equally likely:
O(n log n)
� averaging over all insert sequences (not over all binary trees)
� equivalently: average depth of a node is log n
� proof: see Introduction to Algorithms, Cormen, Leiserson, & Rivest

BST Bonus:
FindMin, FindMax

Binary Search Trees

� Find minimum

� Find maximum

2
092

1
55

1
0

3
07 1

7

Successor Node

Binary Search Trees

Next larger node
in this node’s subtree

2
092

1
55

1
0

3
07 1

7

How many children can the successor of a node have?

Node * succ(Node * t) {
 if (t->right == NULL)
 return NULL;
 else
 return min(t->right);
}

Predecessor Node

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Next smaller node
in this node’s subtree

Node * pred(Node * t) {
 if (t->left == NULL)
 return NULL;
 else
 return max(t->left);
}

Deletion

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Why might deletion be harder than insertion?

Lazy Deletion

Binary Search Trees

Instead of physically deleting nodes, just
mark them as deleted

� simpler
� physical deletions done in batches
� some adds just flip deleted flag

- extra memory for deleted flag

- many lazy deletions slow finds

- some operations may have to be
modified (e.g., min and max)

2
092

1
55

1
0

3
07 1

7

Lazy Deletion

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

Deletion - Leaf Case

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Delete(17)

Deletion - One Child Case

Binary Search Trees

2
092

1
55

1
0

3
07

Delete(15)

Deletion - Two Child Case

Binary Search Trees

3
092

2
05

1
0

7
Delete(5)

Replace node with descendant
whose value is guaranteed to
be between left and right
subtrees: the successor

Could we have used predecessor instead?

Delete Code

Binary Search Trees

void delete(Comparable key, Node *& root) {
 Node *& handle(find(key, root));
 Node * toDelete = handle;
 if (handle != NULL) {
 if (handle->left == NULL) { // Leaf or one child
 handle = handle->right;
 delete toDelete;
 } else if (handle->right == NULL) { // One child
 handle = handle->left;
 delete toDelete;
 } else { // Two children
 successor = succ(root);
 handle->data = successor->data;
 delete(successor->data, handle->right);
 }
 }
}

Thinking about
Binary Search Trees

Binary Search Trees

Observations
� Each operation views two new elements at a time
� Elements (even siblings) may be scattered in memory
� Binary search trees are fast if they’re shallow

Realities
� For large data sets, disk accesses dominate runtime
� Some deep and some shallow BSTs exist for any data

Beauty is Only Θ(log n) Deep

Binary Search Trees

Binary Search Trees are fast if they’re shallow:
� perfectly complete
� complete – possibly missing some “fringe” (leaves)
� any other good cases?

What matters?
� Problems occur when one branch is much longer than another
� i.e. when tree is out of balance

Dictionary Implementations

Binary Search Trees

BST’s looking good for shallow trees, i.e. if Depth is small (log n);
otherwise as bad as a linked list!

unsorted
array

sorted
array

linked
list

BST

insert O(n) find + O(n) O(1) O(Depth)

find O(n) O(log n) O(n) O(Depth)

delete find + O(1)
(mark-as-deleted)

find + O(1)
(mark-as-deleted)

find + O(1) O(Depth)

Digression: Tail Recursion

Binary Search Trees

� Tail recursion: when the tail (final operation) of a function
recursively calls the function

� Why is tail recursion especially bad with a linked list?

� Why might it be a lot better with a tree? Why might it
not?

Making Trees Efficient:
Possible Solutions

Binary Search Trees

Keep BSTs shallow by maintaining “balance”
� AVL trees

… also exploit most-recently-used (mru) info
� Splay trees

Reduce disk access by increasing branching factor
� B-trees

