Binary Search Trees

SDP4

Binary Trees

Binary tree is

- a root
- left subtree (maybe empty)
- right subtree (maybe empty)

Properties

- max # of leaves:
- max # of nodes:
- average depth for N nodes:

Representation:

Binary Tree Representation

Dictionary ADT

keys

- values may be any (homogeneous) type
- keys may be any (homogeneous) comparable type

Dictionary ADT: Used *Everywhere*

- Arrays
- Sets
- Dictionaries
- Router tables
- Page tables
- Symbol tables
- C++ structures
- □ ...

D

Anywhere we need to *find* things fast based on a key

Search ADT

- keys may be any (homogenous) comparable
- quickly tests for membership

Simplified dictionary, useful for examples (e.g. CSE 326)

Dictionary Data Structure: Requirements

□ Fast insertion

- □ runtime:
- Fast searchingruntime:
- Fast deletion
 - □ runtime:

D

Naïve Implementations

	unsorted	sorted	linked list
	array	array	
insert	O(n)	find + O(n)	O(1)
find	O(n)	O(log n)	O(n)
delete	find + O(1) (mark-as-deleted)	find + O(1) (mark-as-deleted)	find + O(1)

Binary Search Tree Dictionary Data Structure

Binary tree property

- □ each node has \leq 2 children
- result:
 - storage is small
 - operations are simple
 - average depth is small

Search tree property

- all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- result:
 - easy to find any given key
 - Insert/delete by changing links

Example and Counter-Example

Complete Binary Search Tree

Complete binary search tree

(aka binary heap):

 Links are completely filled, except possibly bottom level, which is filled left-to-right.

In-Order Traversal

visit left subtree visit node visit right subtree

What does this guarantee with a BST?

In order listing: $2 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 10 \rightarrow 15 \rightarrow 17 \rightarrow 20 \rightarrow 3$ 0

Recursive Find

Runtime:

Best-worse case? Worst-worse case? f(depth)?

```
Node *
find(Comparable key, Node * t)
{
  if (t == NULL) return t;
  else if (key < t->key)
    return find(key, t->left);
  else if (key > t->key)
    return find(key, t->right);
  else
    return t;
}
```

Iterative Find

{

}

```
Node *
find(Comparable key, Node * t)
  while (t != NULL && t->key != key)
  {
    if (key < t->key)
      t = t->left;
    else
      t = t->right;
  }
  return t;
```

Insert

Concept:

- Proceed down tree as in Find
- If new key not found, then insert a new node at last spot traversed

```
void
insert(Comparable x, Node * t)
{
  if ( t == NULL ) {
    t = new Node(x);
  } else if (x < t -> key) {
    insert( x, t->left );
  } else if (x > t - key) {
    insert( x, t->right );
  } else {
    // duplicate
    // handling is app-dependent
}
```

BuildTree for BSTs

Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an initially empty BST:

□ in order

□ in reverse order

median first, then left median, right median, etc.

Analysis of BuildTree

Worst case is $O(n^2)$

$$I + 2 + 3 + ... + n = O(n^2)$$

Average case assuming all orderings equally likely:

- O(n log n)
- averaging over all insert sequences (not over all binary trees)
- equivalently: average depth of a node is log n
- proof: see Introduction to Algorithms, Cormen, Leiserson, & Rivest

BST Bonus: FindMin, FindMax

□ Find minimum

Find maximum

Successor Node

How many children can the successor of a node have?

Predecessor Node

```
Next smaller node
in this node's subtree
```

```
Node * pred(Node * t) {
    if (t->left == NULL)
        return NULL;
    else
        return max(t->left);
}
```


Deletion

D

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

- □ simpler
- physical deletions done in batches
- some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)

Lazy Deletion

Deletion - Leaf Case

Þ

Deletion - One Child Case

Replace node with descendant whose value is guaranteed to be between left and right subtrees: the successor

Could we have used predecessor instead?

Delete Code

```
void delete(Comparable key, Node *& root) {
 Node *& handle(find(key, root));
 Node * toDelete = handle;
 if (handle != NULL) {
    if (handle->left == NULL) { // Leaf or one child
     handle = handle->right;
     delete toDelete;
    } else if (handle->right == NULL) { // One child
     handle = handle->left;
     delete toDelete;
    } else {
                                        // Two children
      successor = succ(root);
     handle->data = successor->data;
      delete(successor->data, handle->right);
}
```

Thinking about Binary Search Trees

Observations

- Each operation views two new elements at a time
- Elements (even siblings) may be scattered in memory
- Binary search trees are fast *if they're shallow*

Realities

- For large data sets, disk accesses dominate runtime
- Some deep and some shallow BSTs exist for any data

Beauty is Only $\Theta(\log n)$ Deep

Binary Search Trees are fast if they're shallow:

- perfectly complete
- complete possibly missing some "fringe" (leaves)
- any other good cases?

What matters?

- Problems occur when one branch is much longer than another
- i.e. when tree is out of balance

Dictionary Implementations

	unsorted	sorted	linked	BST
	array	array	list	
insert	O(n)	find + O(n)	O(1)	O(Depth)
find	O(n)	O(log n)	O(n)	O(Depth)
delete	find + O(1) (mark-as-deleted)	find + O(1) (mark-as-deleted)	find + O(1)	O(Depth)

BST's looking good for shallow trees, i.e. if Depth is small (log n); otherwise as bad as a linked list!

Digression: Tail Recursion

- Tail recursion: when the tail (final operation) of a function recursively calls the function
- Why is tail recursion especially bad with a linked list?
- Why might it be a lot better with a tree? Why might it not?

Making Trees Efficient: Possible Solutions

Keep BSTs shallow by maintaining "balance"

AVL trees

... also exploit most-recently-used (mru) infoSplay trees

Reduce disk access by increasing branching factor B-trees