
Binary Search Trees

SDP4

Binary Trees

Binary Search Trees

Binary tree is
a root
left subtree (maybe empty)
right subtree (maybe empty)

Properties
max # of leaves:
max # of nodes:
average depth for N nodes:

Representation:

A

B

D E

C

F

HG

JIData
right

pointe
r

left
pointe

r

Binary Tree Representation

Binary Search Trees

Arigh
t

chil
d

left
chil
d

A

B

D E

C

F
Brigh

t
chil
d

left
chil
d

Crigh
t

chil
d

left
chil
d

Drigh
t

chil
d

left
chil
d

Erigh
t

chil
d

left
chil
d

Frigh
t

chil
d

left
chil
d

Dictionary ADT

Binary Search Trees

Dictionary operations
create
destroy
insert
find
delete

Stores values associated with user-specified
keys

values may be any (homogeneous) type
keys may be any (homogeneous) comparable
type

Adrien
Roller-blade demon

Hannah
C++ guru

Dave
Older than dirt

…

insert

find(Adrien) Adrien
 Roller-blade
demon

 Donald
 l33t
haxtor

Dictionary ADT:
Used Everywhere

Binary Search Trees

Arrays
Sets
Dictionaries
Router tables
Page tables
Symbol tables
C++ structures
…

Anywhere we need to find things fast based on a key

Search ADT

Binary Search Trees

Dictionary operations
create
destroy
insert
find
delete

Stores only the keys
keys may be any (homogenous) comparable
quickly tests for membership

Simplified dictionary, useful for examples (e.g. CSE 326)

Adrien
Hannah
Dave
…

insert

find(Adrien)
Adrien

 Donald

Dictionary Data Structure:
Requirements

Binary Search Trees

Fast insertion
runtime:

Fast searching
runtime:

Fast deletion
runtime:

Naïve Implementations

Binary Search Trees

unsorted
array

sorted
array

linked list

insert O(n) find + O(n) O(1)

find O(n) O(log n) O(n)

delete find + O(1)
(mark-as-deleted)

find + O(1)
(mark-as-deleted)

find + O(1)

Binary Search Tree
Dictionary Data Structure

Binary Search Trees

Binary tree property
each node has ≤ 2 children
result:

storage is small
operations are simple
average depth is small

Search tree property
all keys in left subtree smaller than
root’s key
all keys in right subtree larger than
root’s key
result:

easy to find any given key
Insert/delete by changing links

4

1
2

1
062

1
15

8

1
4
1
3

7 9

Example and Counter-Example

Binary Search Trees

3

1
171

84

5

4

1
8

1
062

1
15

8

2
0
2
1BINARY SEARCH TREE

NOT A
BINARY SEARCH TREE

7

1
5

Complete Binary Search Tree

Binary Search Trees

Complete binary search tree
(aka binary heap):

Links are completely filled,
except possibly bottom level,
which is filled left-to-right.

7
1
793

1
55

8

1 4 6

In-Order Traversal

Binary Search Trees

visit left subtree
visit node
visit right subtree

What does this guarantee
with a BST?

2
092

1
55

1
0

3
07 1

7
In order listing:
2→5→7→9→10→15→17→20→3
0

Recursive Find

Binary Search Trees

Node *
find(Comparable key, Node * t)
{
 if (t == NULL) return t;
 else if (key < t->key)
 return find(key, t->left);
 else if (key > t->key)
 return find(key, t->right);
 else
 return t;
}

2
092

1
55

1
0

3
07 1

7

Runtime:
Best-worse case?
Worst-worse case?
f(depth)?

Iterative Find

Binary Search Trees

Node *
find(Comparable key, Node * t)
{
 while (t != NULL && t->key != key)
 {
 if (key < t->key)
 t = t->left;
 else
 t = t->right;
 }

 return t;
}

2
092

1
55

1
0

3
07 1

7

Insert

Binary Search Trees

void
insert(Comparable x, Node * t)
{
 if (t == NULL) {
 t = new Node(x);

 } else if (x < t->key) {
 insert(x, t->left);

 } else if (x > t->key) {
 insert(x, t->right);

 } else {
 // duplicate
 // handling is app-dependent
}

Concept:
▪ Proceed down tree
as in Find
▪ If new key not
found, then insert a
new node at last
spot traversed

BuildTree for BSTs

Binary Search Trees

Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an
initially empty BST:

in order

in reverse order

median first, then left median, right median, etc.

Analysis of BuildTree

Binary Search Trees

Worst case is O(n2)

1 + 2 + 3 + … + n = O(n2)

Average case assuming all orderings equally likely:
O(n log n)

averaging over all insert sequences (not over all binary trees)
equivalently: average depth of a node is log n
proof: see Introduction to Algorithms, Cormen, Leiserson, & Rivest

BST Bonus:
FindMin, FindMax

Binary Search Trees

Find minimum

Find maximum

2
092

1
55

1
0

3
07 1

7

Successor Node

Binary Search Trees

Next larger node
in this node’s subtree

2
092

1
55

1
0

3
07 1

7

How many children can the successor of a node have?

Node * succ(Node * t) {
 if (t->right == NULL)
 return NULL;
 else
 return min(t->right);
}

Predecessor Node

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Next smaller node
in this node’s subtree

Node * pred(Node * t) {
 if (t->left == NULL)
 return NULL;
 else
 return max(t->left);
}

Deletion

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Why might deletion be harder than insertion?

Lazy Deletion

Binary Search Trees

Instead of physically deleting nodes, just
mark them as deleted

simpler
physical deletions done in batches
some adds just flip deleted flag

- extra memory for deleted flag

- many lazy deletions slow finds

- some operations may have to be
modified (e.g., min and max)

2
092

1
55

1
0

3
07 1

7

Lazy Deletion

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

Deletion - Leaf Case

Binary Search Trees

2
092

1
55

1
0

3
07 1

7

Delete(17)

Deletion - One Child Case

Binary Search Trees

2
092

1
55

1
0

3
07

Delete(15)

Deletion - Two Child Case

Binary Search Trees

3
092

2
05

1
0

7
Delete(5)

Replace node with descendant
whose value is guaranteed to
be between left and right
subtrees: the successor

Could we have used predecessor instead?

Delete Code

Binary Search Trees

void delete(Comparable key, Node *& root) {
 Node *& handle(find(key, root));
 Node * toDelete = handle;
 if (handle != NULL) {
 if (handle->left == NULL) { // Leaf or one child
 handle = handle->right;
 delete toDelete;
 } else if (handle->right == NULL) { // One child
 handle = handle->left;
 delete toDelete;
 } else { // Two children
 successor = succ(root);
 handle->data = successor->data;
 delete(successor->data, handle->right);
 }
 }
}

Thinking about
Binary Search Trees

Binary Search Trees

Observations
Each operation views two new elements at a time
Elements (even siblings) may be scattered in memory
Binary search trees are fast if they’re shallow

Realities
For large data sets, disk accesses dominate runtime
Some deep and some shallow BSTs exist for any data

Beauty is Only Θ(log n) Deep

Binary Search Trees

Binary Search Trees are fast if they’re shallow:
perfectly complete
complete – possibly missing some “fringe” (leaves)
any other good cases?

What matters?
Problems occur when one branch is much longer than another
i.e. when tree is out of balance

Dictionary Implementations

Binary Search Trees

BST’s looking good for shallow trees, i.e. if Depth is small (log n);
otherwise as bad as a linked list!

unsorted
array

sorted
array

linked
list

BST

insert O(n) find + O(n) O(1) O(Depth)

find O(n) O(log n) O(n) O(Depth)

delete find + O(1)
(mark-as-deleted)

find + O(1)
(mark-as-deleted)

find + O(1) O(Depth)

Digression: Tail Recursion

Binary Search Trees

Tail recursion: when the tail (final operation) of a function
recursively calls the function

Why is tail recursion especially bad with a linked list?

Why might it be a lot better with a tree? Why might it
not?

Making Trees Efficient:
Possible Solutions

Binary Search Trees

Keep BSTs shallow by maintaining “balance”
AVL trees

… also exploit most-recently-used (mru) info
Splay trees

Reduce disk access by increasing branching factor
B-trees

