
1

Records
C++ Structs

Chapter 14

2

What to do with records?

◆ Declaring records
◆ Accessing

records
◆ Accessing the

field of a record
◆ What is a union?
◆ Can records be in

arrays?

3

Records

◆ Recall that elements of arrays must all
be of the same type

◆ In some situations, we wish to group
elements of different types

scores : 85 79 92 57 68 80 . . .
0 1 2 3 4 5 98 99

employee R. Jones 123 Elm 6/12/55 $14.75

4

Records

◆ RECORDS are used to group related
components of different types

◆ Components of the record are called
fields

◆ In C++
– record called a struct (structure)
– fields called members

employee R. Jones 123 Elm 6/12/55 $14.75

5

Records

◆ C++ struct
– structured data type
– fixed number of components
– elements accessed by name, not by index
– components may be of different types

struct part_struct {
 char descrip [31], part_num [11];
 float unit_price;
 int qty; };

6

Declaring struct Variables

◆ Given

◆ Declare :

struct part_struct {
 char descrip [31], part_num [11];
 float unit_price;
 int qty; };

part_struct new_part, old_part;

Use struct name as a type.

7

Accessing Components

◆ Use the name of the record
 the name of the member
 separated by a dot .

◆ The dot is called the member selector

old_part.qty = 5;

cout << new_part.descrip;

8Aggregate Operations with
Structures

◆ Recall that arrays had none (except
reference parameter)

◆ Structures DO have aggregate
operators
– assignment statement =
– parameter (value or reference)
– return a structure as a function type

9Aggregate Operations with
Structures

◆ Limitations on aggregate operations
– no I/O

– no arithmetic operations

– no comparisons

cout << old_part;
cin >> new_part;

old_part = new_part + old_part;

if (old_part < new_part)
 cout << ...;

10Aggregate Operations with
Structures

◆ struct variables must be compared
member-wise.
∙ To compare the values of student and
newStudent, you must compare them
member-wise, as follows:

if(student.firstName == newStudent.firstName &&
 student.lastName == newStudent.lastName) ...

11

Input/Output

◆ There are no aggregate
input/output operations on struct.
• Data in a struct variable must be
read one member at a time.

• Contents of a struct must be
written one member at a time.

12

struct Variables and Functions

◆ A struct variable can be passed as a
parameter either by value or by
reference.

◆ A function can return a value of the type
struct

◆ Note example program fragment

13

Arrays of Records

◆ First declare a struct (such as
part_struct)

◆ Then specify an array of that type

◆ Access elements of the array, elements
of the struct

part_struct part_list [50];

for (x = 0; x <50; x++)
 cout << _______________________;

How do we
print all the

descrip fields?
part_list[x].descrip

14

Records with Arrays

◆ Example
const int arraySize = 1000;

struct listType
{
 int elements[arraySize];

 //array containing the list
 int listLength;

 //length of the list
} See sample

program

15

Hierarchical Records

◆ records where at least one of the
components is, itself, a record

◆ Example:

struct inventory_struct {
 part_struct part;
 int qty_sold, re_order_qty;
 vendor_struct vendor; };

16

Choosing Data Structures

◆ Strive to group logical elements of a
structure together
– calls for hierarchical structures

◆ Push details of entities down to lower
levels of the structure

◆ Data Abstraction <=> separation of
logical peoperties of a data type from its
implementation

17

Testing and Debugging Hints

◆ Declaration of a struct type must end
with a semicolon ;

◆ Be sure to specify the full member
selector when referencing a component
of a struct variable
– don’t leave out the struct name

18

Testing and Debugging

◆ When using an array in a struct, the
index goes at the end
 student_rec.scores[x]

◆ When using an array of struct, the index
goes after the struct name
 parts_list[x].qty

19

Testing and Debugging

◆ Process struct members separately …
the only aggregate operations will be

◆ Assignment =
◆ Parameter passing
void do_it (part_struct
part);

◆ Function return
part_struct blanked_part ();

20

Testing and Debugging

◆ Be careful using same member names
in different struct types

◆ Compiler keeps them separate OK
◆ Human readers can easily confuse

them

struct parts {
 int qty;
 . . .
 } ;

struct test_scores {
 int qty;
 . . .
 } ;

