

Запорожский государственный медицинский университет Кафедра медицинской и фармацевтической информатики

Системы принятия решений на основе экспертных систем в медицине

Медицинский факультет II курс

© Рыжов Алексей Анатольевич

2015

Области применения ЭС

- интерпретация,
- прогноз
- диагностика,
- мониторинг
- планирование,
- проектирование
- отладка
- управление

предназначены для формирования описания ситуаций по результатам наблюдений или данным, получаемым от различного рода сенсоров (датчиков).

Типичные задачи, решаемые с помощью интерпретирующих систем – распознание образов и определение химической структуры вещества

предназначены для прогнозирования хода событий в будущем на основании модели прошлого и настоящего

Типичные задачи, решаемые с помощью прогнозирующих систем – предсказание погоды и прогноз ситуаций на финансовых рынках.

предназначены для обнаружения источника неисправности (или определение стадии заболевания в живом организме), по результатам наблюдений за поведением контролируемой системы (биологической или технической).

Анализируют поведение системы и, сравнивая полученные данные с критическими точками заранее составленного плана, прогнозируют вероятность достижения поставленной цели.

Типовые области приложения таких систем – мониторинг состояния здоровья послеопера - ционных больных, контроль движения воздушного транспорта и наблюдение за состоянием энергетических объектов.

предназначены для структурного синтеза конфигурации объектов (компонентов проектируемой системы) при заданных ограничениях.

Типичными задачами для таких систем выбор схемы лечения в зависимости от поставленного диагноза, синтез электронных схем, компоновка архитектурных планов.

обеспечивают адаптивное управление поведением сложных человеко-машинных систем, прогнозируя появление возможных сбоев и планируя действия, необходимые для их предупреждения.

Областью примененения таких систем является управление воздушным транспортом, деловой активностью в бизнесе.

Определение экспертной системой

вычислительная система, которая использует знания специалистов о некоторой конкретной узко специализированной предметной области и которая в пределах этой области способна принимать решения на уровне эксперта-профессионала

Определение экспертной системой

это система определяемых набором взаимосвязанных правил, формулирующих опыт специалистов в некоторой области и механизмов решения, позволяющим распознать ситуацию, поставить диагноз, давать рекомендации к действию.

MYCIN

Назначение:

Выбор антимикробной терапии в условиях стационара

Представление знаний: правила, обратные цепочки, дерево контекстов Действующий прототип

NEOMYCIN

Назначение:

Лечение менингита и других заболеваний Представление знаний: правила, обратные цепочки, дерево контекстов Действующий прототип

Tropicaid

Назначение:

помощь при диагностике в амбулаториях в тропических условиях

Представление знаний: фреймы

Описано 400 заболеваний

Действующий прототип

CASNET / Glaukoma

Назначение:

предназначена для диагностики и лечения глаукомы

Представление знаний: семантические сети

PUFF

Назначение:

диагностика заболеваний легких

Представление знаний: правила, обратные цепочки

Промышленная

В чем различие?

данных и знаний

В чем различие данных и знаний?

 Данные — это отдельные факты, характеризующие объекты, процессы и явления предметной области, а также их свойства

М

В чем различие данных и знаний?

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

D1 данные как результат измерений и наблюдений

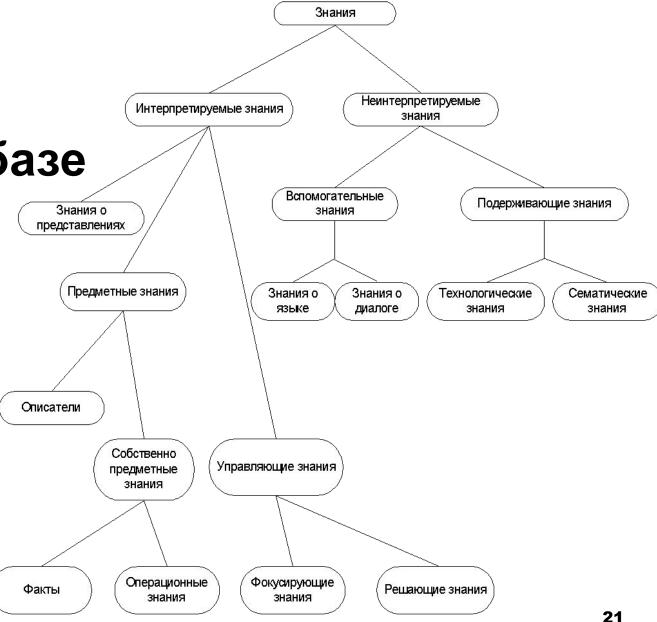
D2 данные на материальных носителях информации (таблицы, протоколы, справочники)

D3 модели (структуры) данных в виде диаграмм, графиков, функций;

D4 данные в компьютере на языке описания данных

D5 базы данных на машинных носителях информации

В чем различие данных и знаний?


Знания — это закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи в этой области

м

В чем различие данных и знаний?

- При обработке на ЭВМ знания трансформируются аналогично данным.
- **Z1** знания в памяти человека как результат мышления
- Z2 материальные носители знаний (учебники, методические пособия)
- Z3 поле знаний условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих
- Знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы см. далее)
- **Z5** *база знаний на машинных носителях информации.* Часто используется такое определение знаний

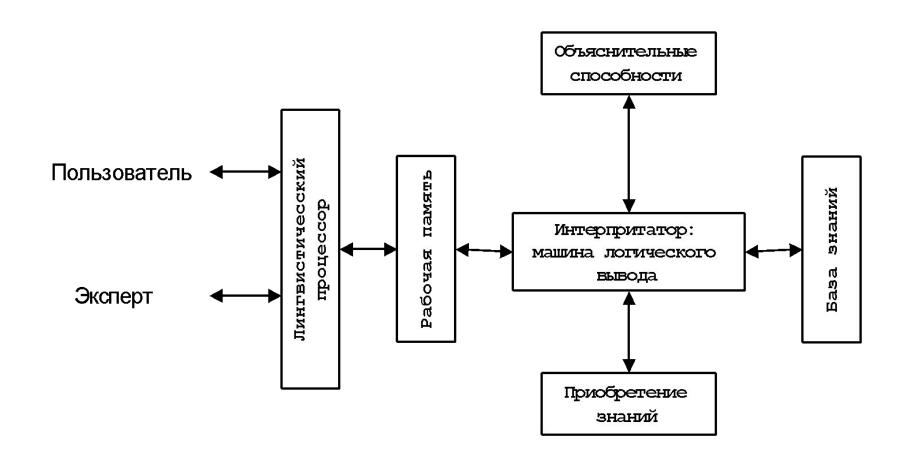
Структура знаний в базе знаний

В чем различие данных и знаний?

- При обработке на ЭВМ знания трансформируются аналогично данным.
- **Z1** знания в памяти человека как результат мышления
- Z2 материальные носители знаний (учебники, методические пособия)
- Z3 поле знаний условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих
- Знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы см. далее)
- **Z5** *база знаний на машинных носителях информации.* Часто используется такое определение знаний

Знания предметной области «Медицинская диагностика»

Знания предметной области состоят из следующих знаний


- Знания о заболеваниях
- Знания о наблюдениях
- Знания о событиях
- Знания о признаках
- Знания об анатомофизиологических особенностях

Знания предметной области «Медицинская диагностика»

Знания о причинно-следственных связях

- Знания об этиологиях
- Знания об осложнениях
- Знания о нормальной реакции
- Знания о реакции на воздействие события
- Знания о клиническом проявлении
- Знания о клиническом проявлении, измененном воздействием события

Структура экспертной системы

Компоненты экспертной системы Лингвистический процессор

Лингвистический процессор выполняет следующие действия:

- 1. преобразует входные данные, представленные на ограниченном естественном языке, в представление на внутреннем языке системы
- 2. преобразует сообщения системы, выраженные на внутреннем языке, в сообщения на ограниченном естественном языке

Компоненты экспертной системы Объяснительный блок

Объяснительный блок сообщает:

- как правила используют информацию пользователя;
- почему использовались (не использовались) данные правила;
- какие были сделаны выводы.

Все объяснения даются на ограниченном естественном языке.

Компоненты экспертной системы Интерпретатор или решатель

Интерпретатор выполняет следующие действия:

- 1. определяет множество означенных правил (означиваний), т.е. множество правил, которые удовлетворяются на некотором наборе текущих данных;
- 2. выполняет определенные означивания, производя изменения в рабочей памяти. Можно показать, что продукционные системы по Ньюэллу являются некоторым неформальным обобщением алгоритмов Маркова. Интерпретатор может быть представлен четверкой:

$$I = (V, S, R, W)$$

Компоненты экспертной системы Интерпретатор или решатель

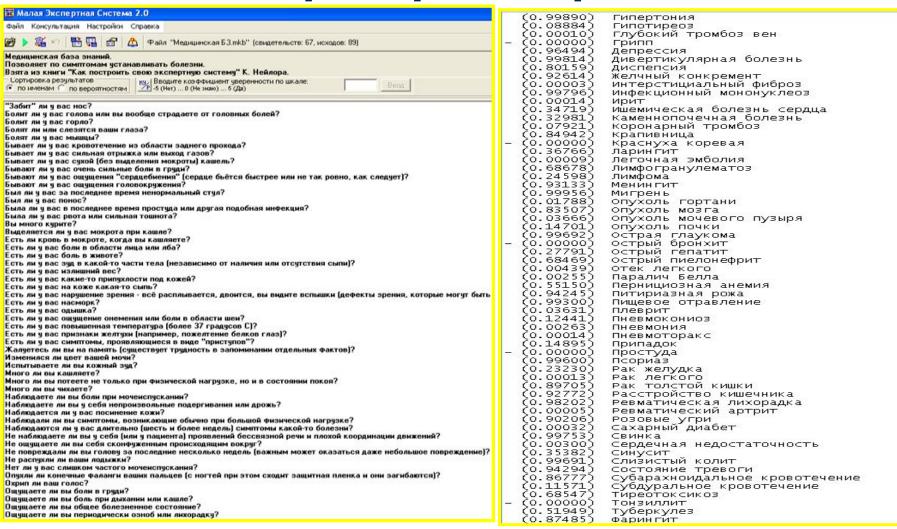
- V— процесс выбора, осуществляющий выбор из P и из F подмножества активных продукций Pv и подмножества активных данных
- S процесс сопоставления, определяющий множество означиваний, т.е. множество пар: правило (р.) данные (d.)
- R процесс разрешения конфликтов (или процесс планирования), определяющий, какое из означиваний будет выполняться.
- W процесс, осуществляющий выполнение выбранного означенного правила

База Знаний

 организованная совокупность знаний, относящихся к какой-нибудь предметной области.

База Знаний

Решающие знания содержат информацию, используемую для выбора способа интерпретации знаний, подходящего к текущей ситуации


База Знаний

Управляющие знания представляют собой некоторый набор стратегий

База Знаний

Метазнания — это знания о знаниях, т. е. это знания экспертной системы о себе, своей работе, своей структуре, своей базе знаний и схеме рассуждения.

Пример экспертной системы

Перечень вопросов для интервьюирования пациента.

Протокол полученный после опроса пациента. В протоколе указана вероятность заболевания.

Примеры правил системы MYCIN

ЕСЛИ	1)	пациент имеет показания и симптомы $s_1 \& \dots \& s_k$
	2)	имеют место определенные фоновые условия t_1 & t_m
TO		можно с уверенностью т заключить, что пациент страдает заболеванием d _i

ЕСЛИ	1)	организм обладает грамположительной окраской, и
	2)	организм имеет форму колбочки, и
	3)	организм в процессе роста образует цепочки
TO		(0.7)
TO		есть основание предполагать (0,7), что этот микроорганизм относиться к классу streptococcus.

Примеры правил системы **MYCIN**

ЕСЛИ	1)	культура взята из анализа крови, и
	2)	пациент страдает повреждением кожи ecthyma gangrenosum, и
TO		есть основание предполагать (0,6), что этот микроорганизм относиться к кпассу pseudomonas.

×

(defrule diagnosis

Оргправило системы MYCIN, записанное на

```
(patient (name Jones)
(organism organism-1))
(organism (name organism-1)
(morphology rod)
(aerobicity aerobic)) => (assert
```

языке CLIPS

(name organism-1)

(organism

(identify enterobacteriaceae)

(confidence 0.8)))

На языке CLIPS представление правила имеет следующий формат:

(defrule <наименование правила> <предпосылка1>

Рейтинг качества диагностики систем MYCIN на основе заключения 8 экспертов 10 клинических случаев

Максимально возмо	жна	я оценка — 80 баллов	
MYCIN	52	Курс лечения, назначенный в действительности	46
Faculty-1	50	Faculty-4	44
Faculty-2	48	Resident	36
Inf dis fellow	48	Faculty-5	34
Faculty-3	46	Student	24
Неприемлемый курс лечения	0		
Одинаковые курсы лечения	1		

M

Логические операции с высказываниями

Отрицание

Отрицанием высказывания А называется высказывание ¬ А (читается, как «неверно. что А» или кратко «не - А»), которое истинно, когда А – ложно, и ложно когда А – истинно.

A	~A
1	0
0	1

Для символизации высказывания «Неверно, что \mathbf{A} » употребляются также символы – 'A, $\tilde{\mathbf{A}}$.

Логические операции с высказываниями

Конъюнкция

Конъюнкцией высказываний А и В называется высказывание А Л В (читается А и В), которое истинно тогда и только тогда, когда истинны оба эти высказывания.

A	В	A A B
~	1	1
1	0	0
0	1	0
0	0	0

Конъюкцию называют также логическим произведением и часто обозначают А·В (или АВ). Вместо знака ∧ используется знак & .

Логические операции с высказываниями

Дизъюнкция

Дизъюнкцией высказываний А и В называется высказывание А V В (читается "А или В"), которое истинно тогда и только тогда, когда истинно хотя бы одно из этих высказываний.

Α	В	AV B
1	1	1
1	0	1
0	1	1
0	0	0

Дизъюнкцию называют *погической суммой* и обозначают иногда «А + В». Из приведенного определения видно, что союз «или» употреблен в неразделительном смысле –

«А или В, или оба».

10

Логические операции с высказываниями

Импликация

Импликацией высказываний А и В называется высказывание А → В (читается – "если А, то В"), которое ложно тогда и только тогда, когда А истинно, а В ложно.

Α	В	А→В
1	1	1
1	0	0
0	1	1
0	0	1

Вместо знака \rightarrow употребляются также знаки: \Rightarrow , \supset . В импликации $A \rightarrow$ В первый элемент A называется антецендентом (лат. antecendens – «предшествующий»), а второй элемент B – консеквентом (consequens – «последующий»).

Импликации A → B эквивалентна, формуле ~A ∨ B.

re.

Логические операции с высказываниями **Кванторы**

- Пусть *x* предметная переменная, областью значений которой служит некоторое множество *M*;
- Р одноместный предикат, определенный на множестве М.
- Если каждый элемент множества M обладает свойством P, то мы получим истинное высказывание: «Для всех x (из множества M) имеет место P(x)».

Логические операции с высказываниями Кванторы

Выражение «для всех» обозначается знаком ∀, который называется *квантором* всеобщности.

При кванторе пишется предметная переменная, которую он связывает в соответствующей.

Так, символ ∀*х* читается : «для всякого *х*». Квантор всеобщности используется для выражения общих высказываний.

10

Логические операции с высказываниями Кванторы

Если свойством Р обладают хотя бы некоторые элементы области определения этого предиката, тогда истинно высказывание «Существуют x, для которых имеет место P(x)». Выражение «некоторые» обозначается знаком \exists , который называется квантором существования.

При кванторе существования пишется предметная переменная, которую он связывает.

Выражение Зх читается: «существует х такое, что ...» или «для некоторого х». Квантор существования используется для частных высказываний.


M

Логические операции с высказываниями **Кванторы**

Квантор общности можно истолковать как обобщение конъюнкции, а *квантор* существования – как обобщение дизъюнкции. В самом деле, если область определения М предиката Р конечна, скажем $M = \{a_1, a_2, ..., a_n\}$, высказывание $\forall x P(x)$ эквивалентно конъюнкции Ра₁ ∧ Ра₂ ∧ ... ∧ Ра_n, а высказывание ЗхР(х) – дизъюнкции Pa₁ VPa₂ V ... VPa_n.

Искусственные нейронные сети (ИНС; artificial neural networks)

Нелинейная система, позволяющая классифицировать данные гораздо лучше, чем обычно используемые линейные методы. В приложении к медицинской диагностике ИНС дают возможность значительно повысить специфичность метода, не снижая его чувствительность

Генетические алгоритмы

- Данные программы имитируют реальные биологические процессы. 1 шаг кодировка исход. данных (хромосом) в БД. Весь набор хромосом популяция. 2 шаг сопоставление хромосом. Обработка процедурами: репродукция, мутации, рекомбинации и миграции.
- Получаем новые данные с более совершенными знаниями

Структура данных базы знаний

Семантическая сеть

Семантическая сеть -

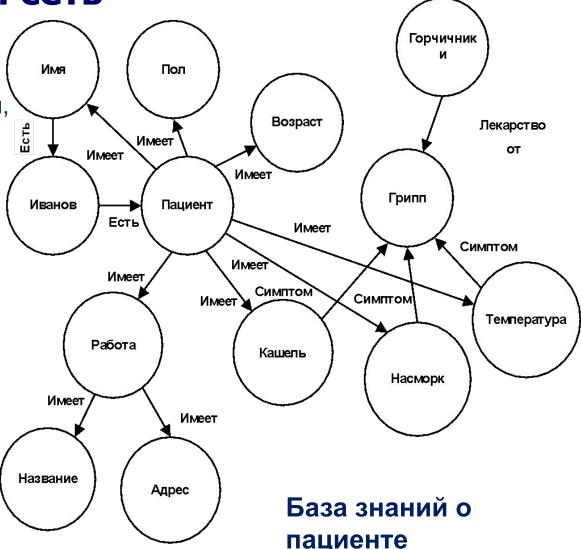
это ориентированный граф, вершины которого – понятия, а дуги отношения между ними.

Типы отношений:

часть-целое:

класс-подкласс; элемент множества;

<u>атрибутивные связи:</u>


- иметь свойство;
- иметь значение

функциональные связи:

- производит;
- влияет;

количественные:

- больше;
- меньше;
- равно;

M

Структура данных базы знаний

Фреймы

<u>Фрейм</u> - это абстрактный образ для представления некого стереотипа восприятия.

Типы фреймов:

фрейм – структура, используется для обозначения объектов и понятий;

фрейм – роль (врач, пациент, клиент, студент); фрейм – сценарий (интервьюирование пациента, экзамен);

фрейм – ситуация (тревога, гомеостаз, рабочий режим учтройства).

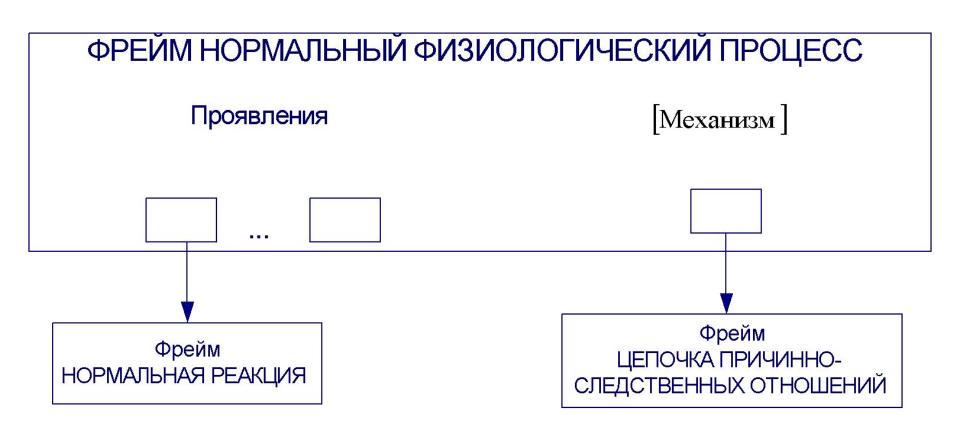
Структура данных базы знаний Структура фрейма

Имя фрейма				
Имя слота	Указатель наследования	Указатель атрибутов слота	Значение слота	Демон
Слот 1				
Слот <i>п</i>				

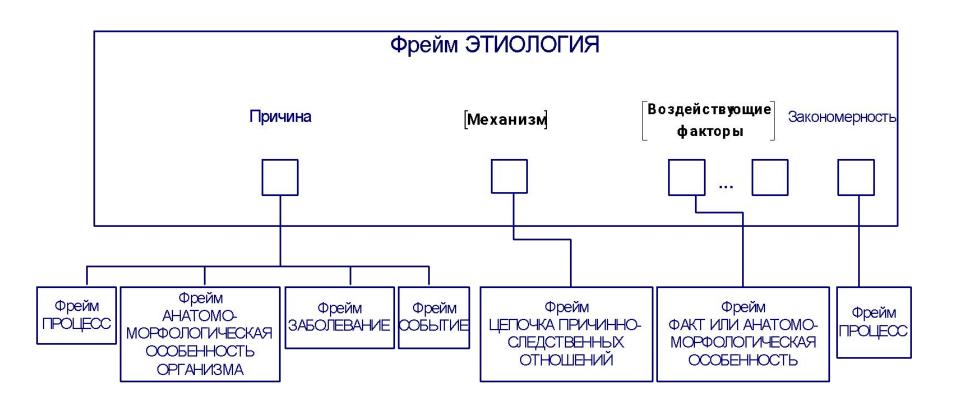
Имя фрейма - это идентификатор, присваиваемый фрейму, фрейм должен иметь уникальное имя в данной фреймовой системе. ₅₂

Структура данных базы знаний Структура фрейма

Имя слота - это идентификатор присваиваемый слоту; слот должен иметь уникальное имя в фрейм, к которому он принадлежит.

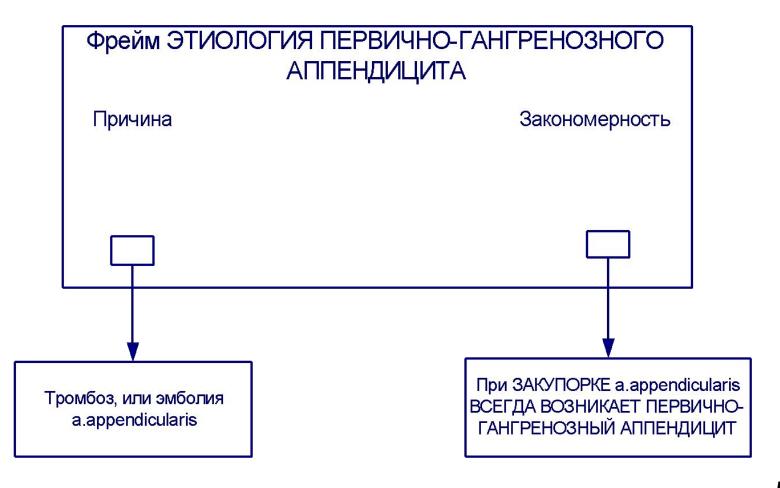

Указатели наследования. Эти указатели касаются только фреймовых систем иерархического типа, основанных на отношениях «абстрактное – конкретное», они показывают какую информацию об атрибутах слотов во фрейме верхнего уровня наследуют слоты с такими же именами во фрейме нижнего уровня.

Указание типа данных. Указывает, что слот имеет численное значение, либо служит указателем другого фрейма (т.е. показывает имя фрейма). К типам данных относятся FRAME, ITERGER, REAL, BOOL, LISP, TEXT, LIST (список), TABLE, EXPRESSION (выражение) и др.


Демон. Демоном называется процедура, автоматически запускаемая при выполнении некоторого условия. Демоны запускаются при обращении к соответствующему слоту.

Структура данных базы знаний

Фреймовое представление нормального физиологического процесса



Структура данных базы знаний
Фреймовое представление этиологии

Структура данных базы знаний

Фреймовое представление этиологии первично-гангренозного аппендицита

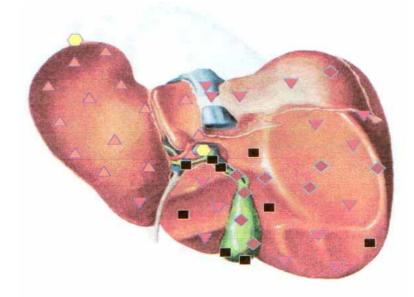
Бирезонансная терапия уже признана эффективным методом диагностирования и лечения

Принцип диагностирования основан на биорезонансном тестировании по принципу обратной связи с организмом человека, с активацией подкорковых структур мозга. Этот метод тестирования позволяет проследить этапы перехода от здоровья к болезни по изменению волновых характеристик тканей и даже отдельных клеток организма, При этом осуществляется спектральный анализ вихревых магнитных полей, возникающих в процессе электрохимических превращений в живых клетках.

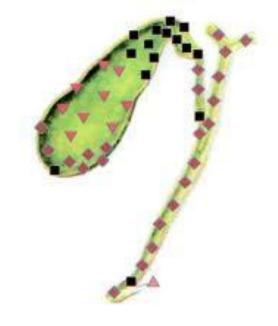
Аппаратно -програмный комплекс ОБЕРОН (Метатрон) компьютерная диагностика

- программно-аппаратный комплекс для нелинейного анализа, разработка которого принадлежит Институту прикладной психофизики г. Омск (ИПП).
- АПК «Оберон» способен анализировать слабые магнитные поля микроорганизмов, групп клеток и органов. Он отслеживает практически любые их состояния по изменению характеристик биополей (частотных и амплитудных). Их слабые излучения снимаются бесконтактно, с помощью специальных датчиков (обычно размещаются на голове, как наушники) и многократно усиливается с использованием эффекта частотного резонанса.

http://www.oberon.lifekaif.ru/test.htm


Компьютерная Диагностика Нового Тысячилетия

Примеры исследования органов биорезонансным методом


 Здесь вы видите компьютерный образы органов. А вот маркеры состояния их отдельных участков — это индивидуальные показатели конкретного человека

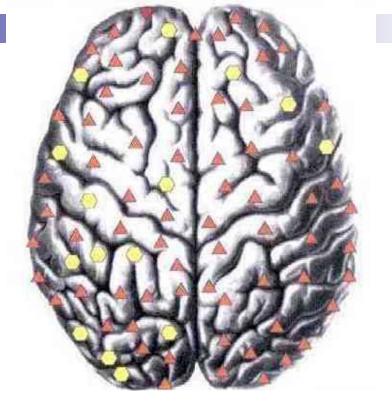
Нормальное состояние здоровой печени. Исключительно редкое явление.

Состояние печени городского жителя Черные маркеры указывают на нарушение процессов детоксикации в печени, вызванные застоем желчи в желчном пузыре и спазмом желчевыводящих путей.

Желчный пузырь


Красные маркеры указывают на напряженное состояние тканей, что говорит о спазме желчевыводящих путей. Черные маркеры указывают на наличие воспаления, затруднения проходимости желчи. Очевидно наличие дискинезии и, возможно, камней

BIZING TOURS THE KNULL THEIR

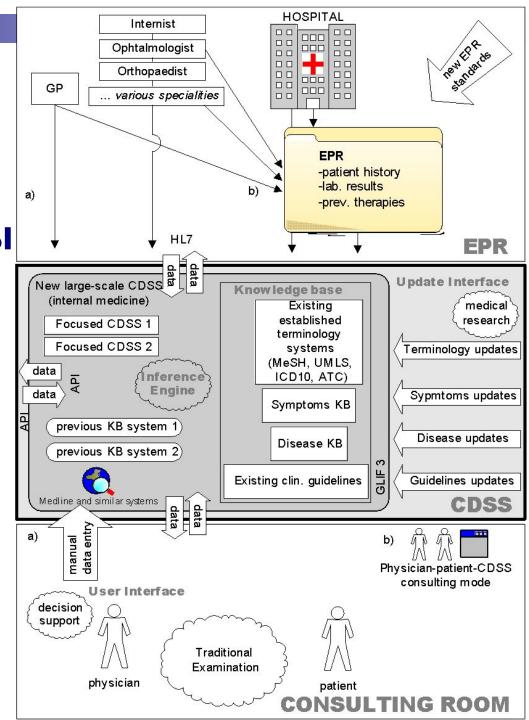

Толстый кишечник

Видна начальная стадия недостаточности клеточного питания, связанная с нарушением всасывания. В нижней части маркеры указывают на воспаление слизистой сигмовидной кишки или наличия язвы

Сосуды передней стенки сердца

Маркеры коричневого цвета указывают на ухудшение кровоснабжения передней стенки сердца, очевидна ранняя стадия атеросклероза коронарных артерий и аорты.

Головной мозг


Красные маркеры говорят о недостаточном кровоснабжении, атеросклерозе сосудов в начальной стадии.

.

Аппарат Оберон

- Экспертная диагностическая система под управлением опытного врача способна дать точные ответы
- Предназначен для проведения компьютерного нелинейного анализа и прогноза состояния исследуемых систем.
- Данный комплекс позволяет определить условия стабильного существования любой материальной системы (объекта), вне зависимости от структурной организации (механическая, физико-химическая, биологическая).

Интеграция экспертной системы в госпитальную систему больницы

Литература

- 1. Джексон П. Введение в экспертные системы. М.: Изд.дом «Вильямс», 2001. 624 с.
- 2. Гаврилова Т.А., Хорошевский В.Ф.Базы знаний интеллектуальных систем. СПб: ПИТЕР, 2001.- 480 с.
- 3. Гешелин С.А. TNM классификация злокачественных опухолей и комплексное лечение онкологических больных. К.: Здоров'я, 1996. -184 с.
- 4. Программирование искусственного интеллекта в приложениях / М. Тим Джонс. М.: ДМК Пресс, 2006- 312 с.
- 5. The Medical Algorithms Project -- http://www.medalreg.com