Применение хроматографических методов для исследования свойств биологических объектов

Колобов Александр Александрович
СПбГУ, Биолого-Почвенный факультет, каф. Биохимии
Санкт-Петербург

2009 г

Хроматография - наука о межмолекулярных взаимодействиях и переносе молекул или частиц в системе несмешивающихся и движущихся относительно друг друга фаз.

Хроматография - процесс дифференцированного многократного перераспределения веществ или частиц между несмешивающимися и движущимися относительно друг друга фазами, приводящий к обособлению и концентрационных зон индивидуальных компонентов исходных смесей этих веществ или частиц.

Хроматография - метод разделения смесей веществ или частиц основанный на различиях в скоростях их перемещения в системе несмешивающихся и движущихся относительно друг друга фаз.

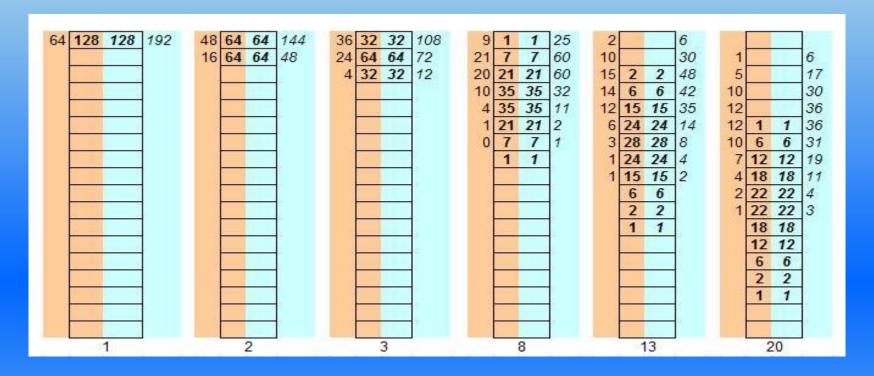
Основные термины

Элюент – жидкость или газ, используемые в качестве подвижной фазы.

Элюат - выходящий из колонки поток подвижной фазы с компонентами разделяемой смеси.

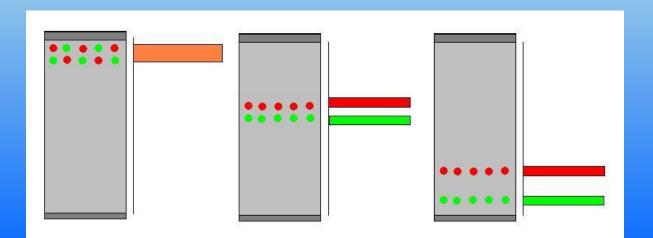
Элюция – выход разделяемых веществ из хроматографической колонки с током элюента.

В процессе хроматографического разделения состав элюента может оставаться неизменным (изократическая элюция), а может изменяться (ступенчатая элюция или градиентная элюция)

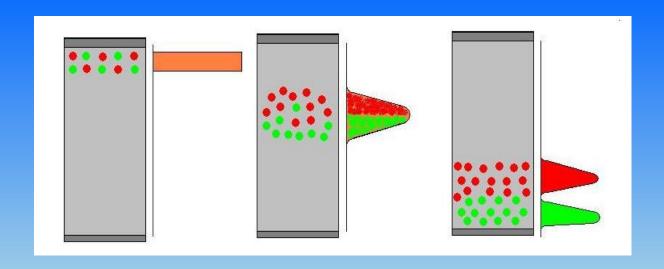

Колонка — содержит хроматографический сорбент, выполняет функцию разделения смеси на индивидуальные компоненты.

Хроматограмма — результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени.

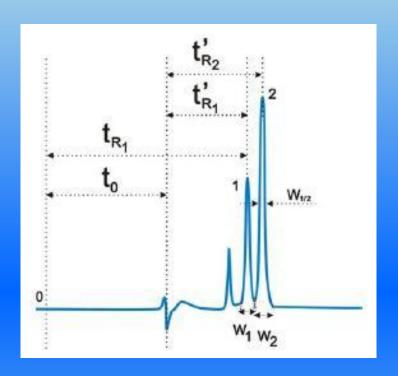
Детектор — устройство для регистрации концентрации компонентов смеси на выходе из колонки.


Хроматограф — прибор для проведения хроматографии.

Концепция теоретических тарелок


Колонка произвольно разделена на 18 теоретических тарелок. На колонку нанесено 512 молекул. Из них 256 (жирный шрифт) распределяются поровну (1:1) между подвижной фазой (прямой шрифт) и неподвижной фазой (курсив). Молекулы другого типа (тонкий шрифт) распределяются таким образом, что в подвижной фазе находится 25%, а в неподвижной — 75% молекул (1:3). При переносе все вещества в подвижной фазе переходят на следующую теоретическую тарелку. После каждого переноса число молекул каждой категории перераспределяется в соответствии с правилом 1:1 и 1:3.

Теоретическая и практическая хроматограммы

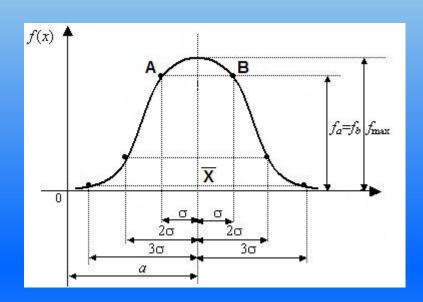


Идеальный вариант разделения смеси двух веществ

Более реальный вариант разделения смеси тех же двух веществ

Основные параметры хроматограммы

 t_0 – нулевое время


t_{R1} – время удерживания для первого пика

t'_{R1} – исправленное время удерживания для первого пика

 w_1 – ширина первого пика у основания

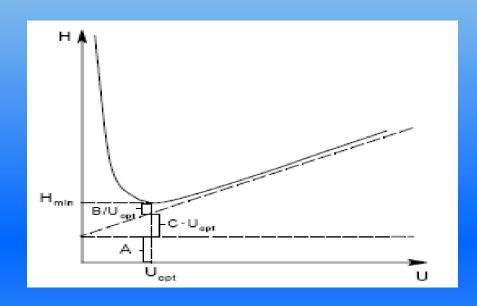
 $W_{1/2}$ – ширина пика на половине его высоты

Нормальное (Гауссово) распределение

$$\sigma^2 = LH$$
, или $\sigma = \sqrt{LH}$

$$\varphi(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$$

где H - высота, эквивалентная теоретической тарелке;
L – длина колонки
H = L/N


N – число теоретических тарелок

$$N = (L/\sigma)^2$$

$$N = 16(t_R/W_b)^2 = 5.545(t_R/W_h)^2$$

где t_R - время удерживания пика, W_b - ширина пика на его полувысоте, W_h - ширина пика у основания.

Влияние внешних факторов на высоту эквивалентную теоретической тарелке

Кривая Ван-Деемтера

H = A + B/U + C*U

Где: Н – высота, эквивалентная теоретической тарелке U – скорость потока подвижной фазы

А – соответствует вкладу неоднородности потока подвижной фазы

В – соответствует продольной диффузии в подвижной и неподвижной фазах

С – соответствует кинетике массопередачи

При малых скоростях потока увеличивается вклад продольной диффузии. При высоких – кинетики массопередачи

Классификация хроматографических методов

По агрегатному состоянию фаз

Газовая хроматография

Газо-жидкостная хроматография

Газо-твёрдофазная хроматография

Жидкостная хроматография

Жидкостно-жидкостная хроматография

Жидкостно-твёрдофазная хроматография

Жидкостно-гелевая хроматография

По механизму взаимодействия

Ионообменная хроматография

Адсорбционная хроматография

Адсорбционно-комплексообразовательная хроматография

Эксклюзионная хроматография

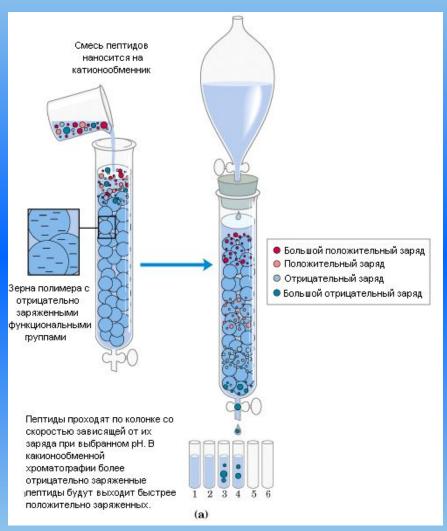
Осадочная хроматография

Распределительная хроматография

По цели проведения

Аналитическая хроматография

Препаративная хроматография


Промышленная хроматография

Ионообменная хроматография

Ионообменная хроматография позволяет разделить молекулы, основываясь на ионных взаимодействиях. Неподвижная фаза имеет заряженные функциональные группы, которые взаимодействуют с анализируемыми ионизированными молекулами противоположного заряда. Этот вариант хроматографии классифицируется на два типа — катионную и анионную ионообменную хроматографию:

Высокоэффективная ионообменная хроматография упакованные сорбентом с размером зерен 5-10 мкм, давление до 10 МПа) смесей нуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований и их метаболитов в биол. жидкостях (плазма крови, моча, лимфа и др.) используется для диагностики заболеваний. Белки и разделяют с помощью ионообменной кислоты хроматографии на гидрофильных высокопроницаемых ионитах на основе целлюлозы, декстранов, синтетических полимеров, широкопористых гидрофильность силикагелей; матрицы ионита уменьшает неспецифические взаимодействия биополимера с сорбентом.

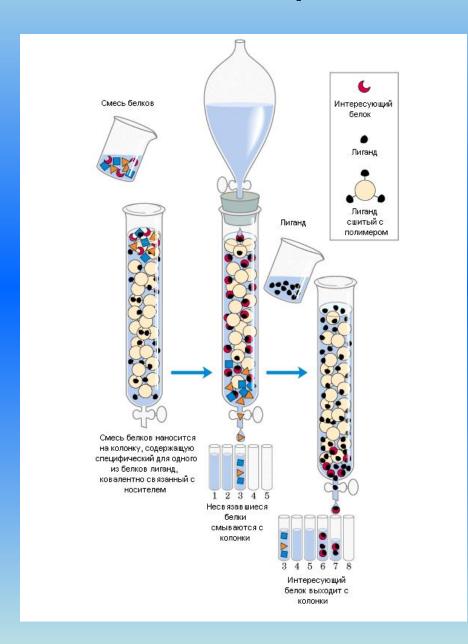
Принципиальная схема

Катионная ионообменная

хроматография задерживает положительно заряженные катионы, так как неподвижная фаза имеет отрицательно заряженные функциональные группы, например, фосфат (РО43-).

Анионная ионообменная

хроматография задерживает отрицательно заряженные анионы, так как неподвижная фаза имеет положительно заряженные функциональные группы, например, +N(R)4.


Адсорбционная хроматография

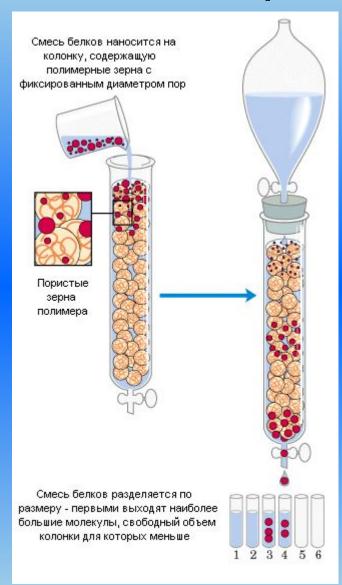
Вид хроматографии основанный на способности твёрдого вещества — неподвижной фазы — сорбировать примеси, находящиеся в подвижной фазе. При этом эффективность разделения примесей пропорциональна их величинам адсорбции при условиях эксперимента. Процесс взаимодействия может сопровождаться химическим взаимодействием примесей с неподвижной фазой, то есть хемосорбцией.

Адсорбционно-комплексообразовательная (аффинная) хроматография

Разновидность лигандной хроматографии. В основе последней лежит реакция взаимодействия разделяемых примесей с лигандом, связанным с инертным носителем. В случае аффинной хроматографии в роли примесей выступают биологически активные вещества (белки, ферменты), вступающие с лигандом (тоже, как правило, органическим) в специфическое биохимическое взаимодействие. Например: антитело-антиген, гормонрецептор и т. д. Именно высокая специфичность подобного взаимодействия обуславливает высокую эффективность аффинной хроматографии и её широкое (по сравнению с другими видами лигандной хроматографии) распространение.

Принципиальная схема

В качестве лиганда могут выступать:


- Антитела
- •Хелатирующие агенты
- •Комплексообразующие агенты
- и т. д.

Эксклюзионная хроматография

В эксклюзионной (ситовой, гель-проникающей, гель-фильтрационной) хроматографии молекулы веществ разделяются по размеру за счёт их разной способности проникать в поры носителя. При этом первыми выходят из колонки наиболее крупные молекулы (большей молекулярной массы), способные проникать в минимальное число пор носителя. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры сорбента.

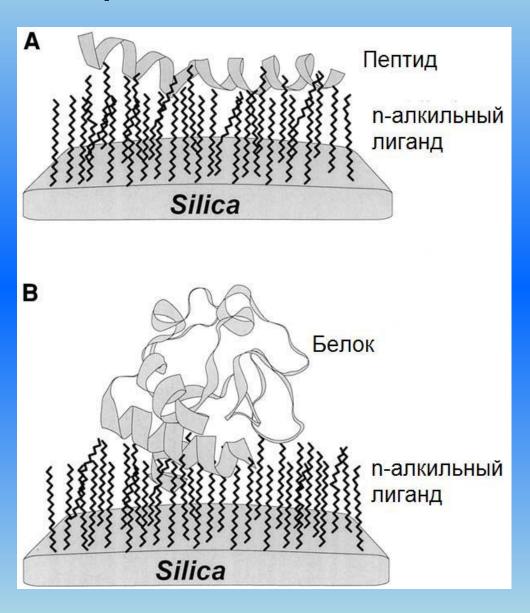
Эксклюзионную хроматографию эффективно применяют при разработке новых полимеров, технол. процессов их получения, контроле произ-ва и стандартизации полимеров. Эксклюзионную хроматографию используют для анализа МW полимеров, исследования, выделения и очистки полимеров, в т. ч. биополимеров.

Принципиальная схема

Наиболее распространенные сорбенты:

- Сефадекс
- Сефакрил
- Агарозные частицы (Биогели)

Осадочная хроматография


Метод хроматографии, основанный на способности разделяемых веществ образовывать малорастворимые соединения с различными произведениями растворимости.

В качестве неподвижной фазы выступает инертный носитель, покрытый слоем осадителя; разделяемые вещества, находящиеся в подвижной фазе, вступают во взаимодействие с осадителем и образуют малорастворимые вещества — осадки. При дальнейшем пропускании растворителя происходят поочерёдно: растворение этих осадков, перенос вещества по слою неподвижной фазы, снова осаждение и т. д. При этом скорость перемещения осадка по неподвижной фазе пропорциональна его произведению растворимости (ПР). Хроматограммой в данном случае будет являться распределение осадков по слою носителя.

Распределительная хроматография

В распределительной ВЭЖХ разделение происходит за счет разной растворимости разделяемых веществ в неподвижной фазе, как правило, химически привитой к поверхности неподвижного носителя, и в подвижной фазе - растворителе. Этот метод разделения наиболее популярен, особенно в случае, когда привитая фаза представляет собой неполярный алкильный остаток от С4 до С18, а подвижная фаза более полярна, например смесь метанола или ацетонитрила с водой. Это так называемая обращённо-фазная (обратно-фазная, или с обращением фаз) хроматография.

Принципиальная схема

HPLC/BЭЖX

HPLC

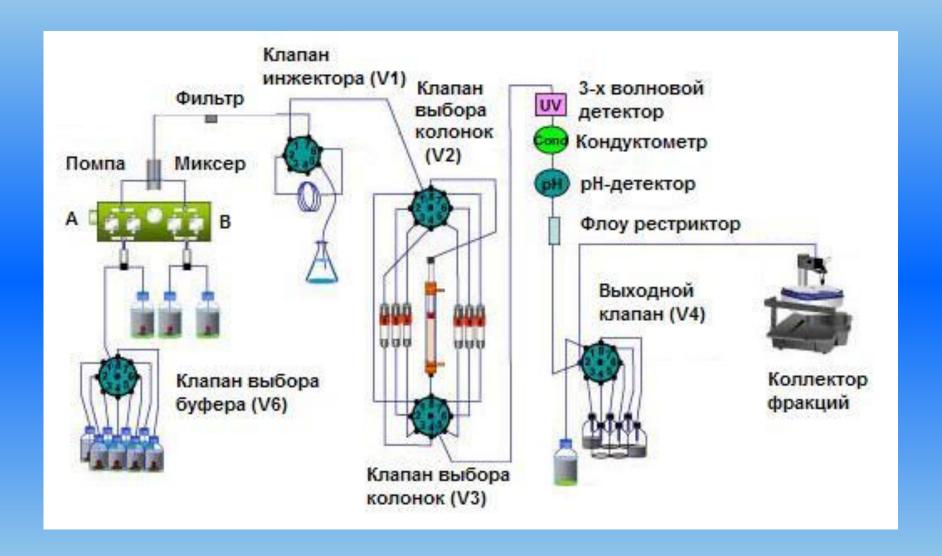
high-performance liquid chromatography high-pressure liquid chromatography

ВЭЖХ

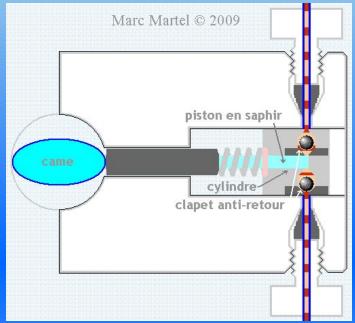
высокоэффективная жидкостная хроматография

По агрегатному состоянию фаз

Жидкостнотвёрдофазная хроматография

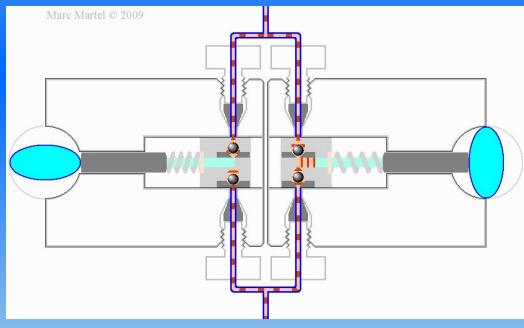

По механизму взаимодействия

Распределительная хроматография (обращенно-фазовая)

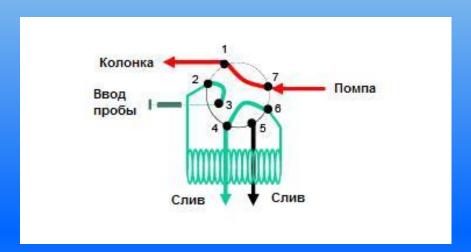

По цели проведения

Аналитическая хроматография

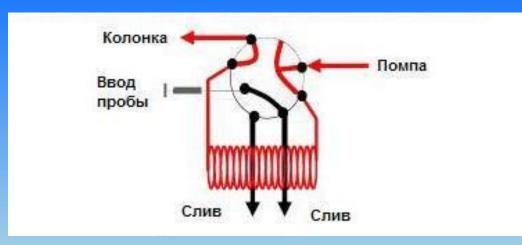
Блок-схема жидкостного хроматографа

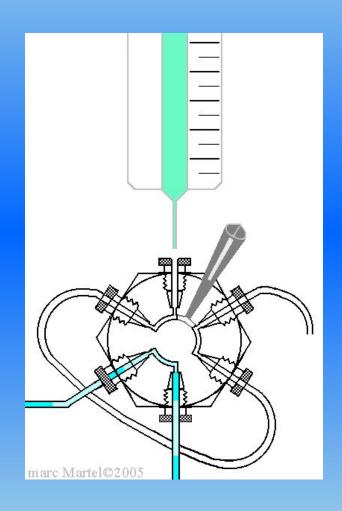


Принцип работы помпы

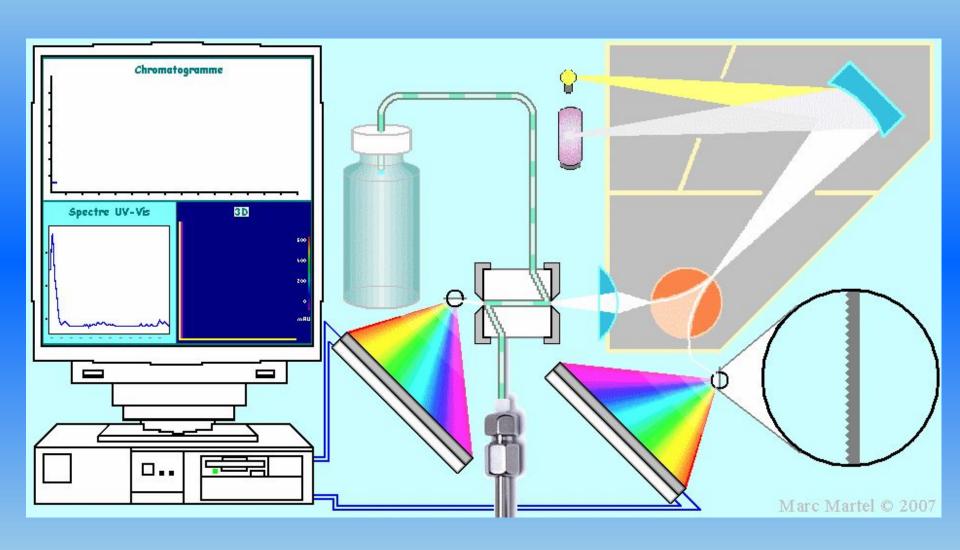

Одноплунжерная помпа

Двуплунжерная помпа

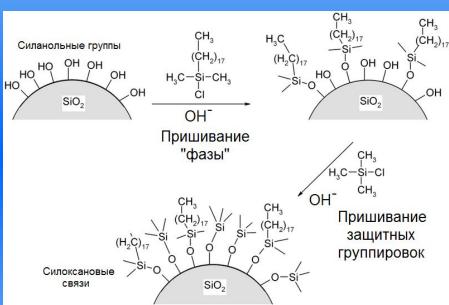



Принцип работы инжектора

Загрузка пробы в петлю



Нанесение пробы на колонку



Принцип работы UV-VIS детектора

Матрицы ОФ-ВЭЖХ

Силикагель

Полистирол, сшитый дивинилбензолом

$$-CH-CH_{2}-CH-CH_{2}-CH-CH_{2}$$

$$X$$

$$-CH-CH_{2}$$

Оксиды алюминия, титана, циркония

Наиболее распространенные фазы

Обращенные фазы

Нормальные фазы

Параметры и методы оценки сорбентов для обращенно-фазной хроматографии

П	а	n	a	М	6	Т	n
	•	r	•		_	-	r

Метод оценки

Эффективность N Фактор удерживания K_{AB}

Число теоретических тарелок на метр длины колонки Для пентилбензола время выхода несорбируемого компонента определяется по метанолу; оценка плотности прививки на поверхности силикагеля

Гидрофобность, или гидро-Отношение факторов удерживания пентилбензола и бутилбензола фобная селективность a_{CH2} a CH2 = $K_{\Pi S}/K_{SS}$. Это мера плотности покрытия поверхности фазой и ее лигандной емкости

силилирующего реагента

Стерическая селективность а_{т/0}

Отношение факторов удерживания между трифениленом и терфенилом $a_{T/0} = KT/K0$. Этот показатель оценивает селективность к молекулам разной геометрической формы и связи с типом

Емкость взаимодействия по типу водородной связи а_{к/ф} а_{к/ф}

Отношение факторов удерживания между кофеином и фенолом = K_{T}/K_{Φ} . Это оценивает число свободных гидроксильных групп и степень дозакрытия (экранирования)

Ионообменная емкость при pH = 7,6 $a_{E/\Phi}$

Отношение факторов удерживания бензиламина и фенола $a_{\text{Б/ф}} = K_{\text{Б}}/K_{\text{ф}}$. Эта величина определяет общую силанольную активность

Ионообменная емкость при pH = $2.7 a_{F/\Phi}$

Отношение факторов удерживания бензиламина и фенола в кислой среде. Этот параметр определяет общую кислотную активность силанольных групп

Характеристики коммерческих сорбентов С18 для обращенно-фазной хроматографии

Название	Фирма	К	a _{CH2}	а _{т/0}	а _{к/Ф}	a _i	5/Ф	N
						pH 7.6	pH 2.7	
Develosil ODS	Phenomenex	6,7	1,49	1,24	0,51	0,1	0,07	63000
Discovery C ₁₈	Supelco	3,32	1,48	1,51	0,39	0,28	0,1	80000
Hypersil Elite C ₁₈	Waters	3,2	1,47	1,6	0,37	0,29	0,1	79000
Luna C ₁₈ (16,5% C)	Phenomenex	5,97	1,47	1,17	0,4	0,24	0,68	90000
Novapak C ₁₈	Waters	4,49	1,49	1,44	0,48	0,27	0,14	70000
Optimal-ODS H	Phenomenex	6,15	1,48	1,38	0,44	0,24	0,09	83000
Prodigy ODS 3	Phenomenex	7,27	1,49	1,26	0,42	0,27	0,09	73000
Purospher RP18c	Merck	6,51	1,48	1,75	0,46	0,34	0,08	66000
Selectosil C ₁₈	Waters	4,94	1,45	1,69	0,68	1,98	0,14	61000
Summit ODS (W)	Supelco	5,45	1,47	1,29	0,56	0,4	0,1	88000
Supelcosil LCI 8	Supelco	4,82	1,47	1,42	0,46	1,93	0,89	61000
Superspher RP18c	Merck	5,47	1,47	1,64	0,44	0,42	0,11	50000
Symmetry C _{I8}	Waters	6,51	1,46	1,49	0,41	0,68	0,01	56000
Symmetry Shield	Waters	4,66	1,41	1,22	0,27	0,2	0,04	83000
Xterra RP18	Agilent	2,38	1,29	1,83	0,33	0,2	0,07	41000
Zorbax Extend C18	Agilent	6,66	1,5	1,49	0,38	0,55	0,11	88000
	Среднее	5,4	1,47	1,52	0,52	0,81	0,21	65000

Специализированные колонки в ВЭЖХ

Сорбент	Назначение колонок
Hypersil Green Env	Для анализа загрязнений окружающей среды
	(фенолов, фталатов, пестицидов и др.)
Hypersil Green PAH	Для анализа полиароматических соединений,
	включая и 1,2-бензопирен
Hypersil Green	Для анализа карбаматных пестицидов
Carbamate	(по методу ЕРА)
Hypersil PeP	Для анализа и выделения синтетических и
	природных пептидов и белков (размер пор 100 и 300 A)
Hypersil Duet	Колонки со смешанными фазами, для анализа
(C18/SAX C18/SCX)	одновременно гидрофобных и ионных
	соединений, для анализа метаболитов
	лекарственных препаратов
HyperREZ XP	Для анализа спиртов, сахаров (высокая
CarboHydrate	стабильность при низких значениях рН)

Сорбенты для обращенно-фазной хроматографии, приготовленные по нетрадиционной технологии или на несиликагелевой основе

Сорбент Характеристики

Diamond Band C18 Фаза C18 на оксиде циркония, рекомендуется для

ZirChrom Separation работы при высоких рН и температурах

Hydrocell RP 10D На основе сополимера стирола и дивинилбензола,

BioChrom Labs. Inc размер пор 1000 A, сферические частицы 10 мкм,

рекомендуется для разделения белков

Poroshell 300SB-C18 Фаза С18 на поверхностно-пористом сферическом

Agilent Technologies силикагеле (зерна 5 мкм), колонка 75х2,1 мм для

быстрого разделения белков

Presto FT-C18 Фаза С18 на непористых частицах сферического

Irritant Corp кремнезема (зерна 2 мкм), колонка 30х4,6 мм для

сверхбыстрого разделения

Aquasil C18 Наличие гидрофильных и гидрофобных групп, Thermo

Hypersil предназначенных для анализа полярных соединений, в

частности, водорастворимых витаминов, сорбент

устойчив в водных элюентах (до 100%)

Fluophase PFP Перфторированные фенильные группы

Thermo Hypersil

Сорбент Характеристики

Fluophase RP

Thermo Hypersil

Fluophase WP

Thermo Hypersil

Перфторированные алкильные цепи

Перфторированные алкильные цепи на силикагеле

(зерна 300 А), перфторированные сорбенты

рекомендуются для разделения фос-фолипидов,

На основе сополимера стирола и дивинилбензола

галогенсодержащих соединений, фенолов, изомеров

Aster Polymer C18

Astec

На основе поливинилового спирта

Spherisorb ASY

Waters

На основе оксида алюминия

Supelcogel ODS (W)

Supelco

ZirChrom PBD

На основе оксида циркония

ZirChrom Separation

Hy Purity

THKSo

Сферические частицы силикагеля 3 и 5 мкм (диаметр пор - 180 A), фазы C18, C8 и CN для

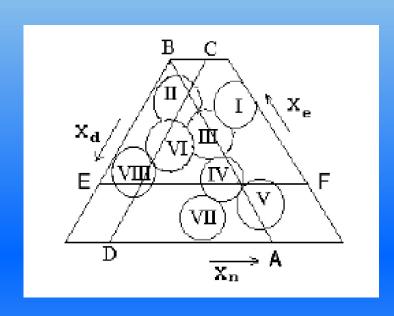
приготовления капиллярных колонок

Pico Frit New

Objective Inc

Для капиллярных колонок 75 мкм х 10;50;100 мм

Свойства растворителей для ВЭЖХ


Растворитель	Предел прозрачности для УФ-света, нм	Элюирующая сила є0 на силикагеле	Параметр Р'	Параметр S	Группа селективности
Ацетонитрил	190	0,50	5,8	3,1	VI
Вода	-	1.50	10.2	0,0	VIII
Гексан	190	0,01	0,1	-	-
Метанол	205	0,7	5,1	3.0	II
Метиленхлорид	233	0,32	3,1	-	V
Пропанол-2	205	0,55	3,9	4,2	II
Тетрагидрофуран	212	0.44	4,0	4,4	III
Толуол	285	0,1	2,4	-	VII
Триэтиламин	-	-	1,9	-	I
Хлороформ	245	0,26	4,1	-	VIII
Этилацетат	256	0,38	4,4	-	VI

Адсорбционная сила растворителя ε0 – относительная энергия взаимодействия молекул подвижной фазы с поверхностью адсорбента;

Параметр Р' (параметр Снайдера) – сумма логарифмов коэффициентов распределения стандартных веществ (этанола, диоксана и нитрометана) между паровой фазой и испытуемым растворителем;

Параметр S –отражает чувствительность величин удерживания к изменению состава подвижной фазы. Эта величина предложена для ОФ ВЭЖХ.

Классификация растворителей по Снайдеру

Кругами выделены области, в которых группируются растворители по селективности:

Xe – способность к протонодонорным взаимодействиям;

Xd – способность к протоноакцепторным взаимодействиям; Xn – способность к диполь-дипольным взаимодействиям.

АВ, CD и EF- тренды изменения способности к соответствующим взаимодействиям

I – алифатические простые эфиры, амины;

II – алифатические спирты;

III – пиридины, тетрагидрофуран, амиды (кроме формамида);

IV – гликоли, уксусная кислота, формамид;

V – метиленхлорид, этиленхлорид;

VI – алифатические кетоны и сложные эфиры, диоксан, сульфоны, нитрилы;

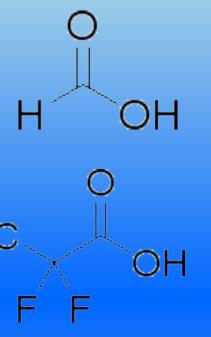
VII – ароматические углеводороды, нитросоединения;

VIII – фторированные спирты, вода, хлороформ.

Противоионы ион-парной хроматографии

Анионы

CH ₃ - (CH ₂) ₄ - SO ₃	CH ₃ - (CH ₂) ₅ - SO ₃	CH ₃ - (CH ₂) ₁₂ - SO ₃ -	SO3.
Пентансульфонат	Гексансульфонат	Додекансульфонат	Нафталенсульфонат
CH ₃ = (CH ₂) ₅ = SO ₄	CH ₃ = (CH ₂) ₇ = SO ₄	CH ₃ — (CH ₂) ₉ – SO ₄	CH ₃ - (CH ₂) ₁₁ - 50 ₄
Гексилсульфат	Октилсульфат	Децилсульфат	Додецилсульфат
F ₃ C - COO ⁻	Cl ₃ C - COO-	PO4 ³⁻	ClO ₄ -
Трифторацетат	Трихлорацетат	Фосфат	Перхлорат


Катионы

N (CH ₃) ₄ ⁺ X ⁻	N (C ₂ H ₅) ₄ ⁺ X ⁻	N (C ₄ H ₉) ₄ ⁺ X ⁻	N (C ₇ H ₁₅) ₄ ⁺ X ⁻
Тетраметиламмоний	Тетраэтиламмоний	Тетрабутиламмоний	Тетрагептиламмоний
CH ₃ - (CH ₂) ₁₅ N (CH ₃) ₃ X		CH ₃ - (CH ₂) ₇ - NH ₂	(C ₈ H ₁₇) ₃ N
Цетилтриметиламмоний или Пальмитилтриметиламмоний		Октиламин	Триоктиламин

Классические противоионы ОФ-ВЭЖХ хроматографии

Анионы:

- Муравьиная кислота
- Трифторуксусная кислота
- Гептафтормасляная кислота

F₃C OH

Катионы:

Соли тетраалкиламмония
 (например, тетрабутиламмоний)

Регенерация обращённо-фазовых колонок с внутренним диаметром 4.6 мм

- 1. Подсоедините колонку к хроматографу в противоположном направлении.
- 2. Промойте колонку от буферных растворов и солей обратным током 25 мл воды со скоростью 0.2-0.3 мл/мин.
- 3. Промойте колонку 25 мл пропан-2-ола с расходом 0.2-0.3 мл/мин.
- 4. Промойте колонку 25 мл метиленхлорида с расходом не более 0.5 мл/мин.
- 5. Промойте колонку 25 мл гексана с расходом не более 0.5 мл/мин.
- 6. Промойте колонку ещё раз 25 мл метиленхлорида с расходом не более 0.5 мл/мин.
- 7. Промойте колонку ещё раз 25 мл пропан-2-ола с расходом 0.2-0.3 мл/мин.
- 8. Подсоедините колонку в обычном направлении. Промойте колонку подвижной фазой, не содержащей буферный раствор, только после этого добавьте в подвижную фазу буферный раствор с рабочим расходом.
- 9. Приведите колонку в равновесие 25 50 мл подвижной фазы.
- 10. Введите пробу или стандарт, чтобы убедиться, что колонка регенерирована.

Несколько стандартных вопросов-ответов

Причины плохой воспроизводимости	Симптомы		Необходимые действия
Колонка неуравновешенна	 Постоянное увеличение или уменьшение времён удерживания Неправильная форма пика 	2)	Уделяйте больше времени уравновешиванию колонки. Перед вводом пробы промойте колонку как минимум 15 объёмами подвижной фазы (35 мл для колонки 250 х 4.6 мм). Если для анализа необходим слабый элюент, промойте колонку сначала более сильным растворителем.
Загрязнённая колонка.	 Продолжительное уменьшение времени удерживания Неправильная форма пика Увеличивающееся давление 	2)	Промойте колонку обратным током сильным растворителем с расходом в 5 раз меньшим по сравнению с рабочим. Если промывка не помогает, замените колонку. В следующий раз используйте предколонку.
Перегрузка колонки	Уменьшение времениудерживания приувеличении массывведённого образца	1) 2)	Разбавьте пробу перед вводом. Подберите колонку с большим внутренним диаметром.