Современные аспекты линейного кодирования

Актуальность

Линейное кодирование позволяет:

- □ Конкретизировать информацию;
- □ Выбирать оптимальные решения;
- □ Обеспечить надежность передачи информации по каналам связи;
- согласование параметров передаваемой информации с особенностями канала связи;

Цель

Изучение современных аспектов линейного кодирования

Задачи

- Дать определение линейному кодированию;
- Изучить его параметры и свойства;
- □ Разобрать методы его осуществления;

Введение

В связи с появлением современных технологий и средствами передачи информации, возрастающим объемом потоком данных появилась необходимость кодирования информации.

Кодирование изучает, как лучше упаковать данные, чтобы после передачи сигнала можно было надежно и просто выделить полезную информацию из них.

Помехоустойчивые коды и их применение

Помехоустойчивые коды – это коды, позволяющие обнаруживать и исправлять ошибки в кодовых словах, которые возникают при передаче по каналам связи.

Помехоустойчивые коды и их применение

Применение помехоустойчивых кодов для повышения верности передачи данных связанно с решением задач кодирования и декодирования.

Помехоустойчивые коды и их применение

□ Кодирование:

СООБЩЕНИЕ ПОСЛЕДОВАТЕЛЬНОСТЬ КОДОВ

□ Декодирование:

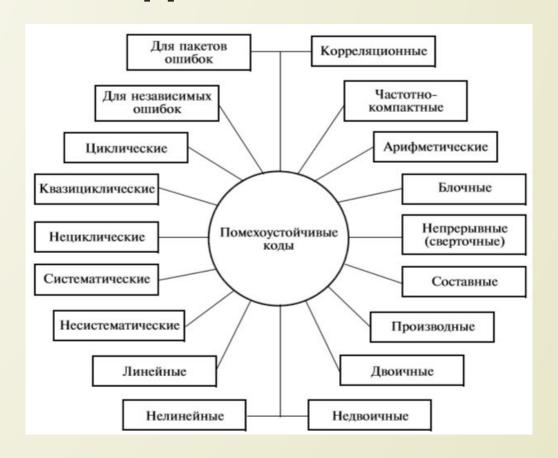
ПОСЛЕДОВАТЕЛЬНОСТЬ КОДОВ СООБЩЕНИЕ

Основные параметры помехоустойчивых кодов

- Основные параметры помехоустойчивых кодов следующие:
- n общее число элементов кодовой комбинации;
- k количество информационных элементов;
- -r количество проверочных разрядов кодовой комбинации r = n k;
- d₀ кодовое расстояние Хэмминга;
- R скорость кода R = $\frac{r}{n}$. Характеризует качество кода;
- D_k избыточность кода;
- p₀₀ вероятность обнаружения ошибки (искажения);
- р_{но} вероятность не обнаружения ошибки (искажения);

Классификация помехоустойчивых кодов

Рисунок 1 – классификация помехоустойчивых кодов



Выполнила: ст.гр.АБ-46 Федюнина Алёна Олеговна

Линейные коды – это коды, в которых проверочные символы представляют собой линейные комбинации информационных символов. Для двоичных кодов в качестве линейной операции используют сложение по модулю 2.

 $0 \oplus 0 = 0$; $0 \oplus 1 = 1$; $1 \oplus 0 = 1$; $1 \oplus 1 = 0$.

Кодовый вектор 1 и 0

Вес кодового вектора (кодовой комбинации) равен его числу ненулевых компонентов.

Расстояние между двумя кодовыми векторами равно весу вектора, полученного в результате сложения исходных векторов по модулю 2.

Преимущество линейного кодирования: благодаря линейности для запоминания или перечисления всех кодовых слов достаточно хранить в памяти кодера или декодера существенно меньшую их часть.

Недостаток: линейные коды хорошо справляются с редкими, но большими пачками ошибок, их эффективность при частых, но небольших ошибках менее высока.

Применение:

- в системах цифровой связи, в том числе: спутниковой, радиорелейной, сотовой, передаче данных по телефонным каналам;
- в системах хранения информации, в том числе магнитных и оптических;
- □ в сетевых протоколах различных уровней;

Код Шеннона-Фано

Алгоритм Шеннона— Фано— один из первых алгоритмов сжатия.

Алгоритм префиксные, то есть никакое кодовое слово не является началом любого другого. Это свойство позволяет однозначно декодировать любую последовательность кодовых слов.

Код Шеннона-Фано

a,	p(a _i)	1	2	3	4	Итого
a,	0.36	•	00			00
a ₂	0.18	0	01			01
a ₃	0.18		10			10
a ₄	0.12	1	11	110		110
a ₅	0.09			111	1110	1110
a ₆	0.07				1111	1111

Рисунок 2 - Пример построения кодовой схемы для шести символов a_1 - a_6 и вероятностей p_i

Код Шеннона-Фано

Исходные символы:

- А (частота встречаемости 50)
- В (частота встречаемости 39)
- С (частота встречаемости 18)
- D (частота встречаемости 49)
- Е (частота встречаемости 35)
- Г (частота встречаемости 24)

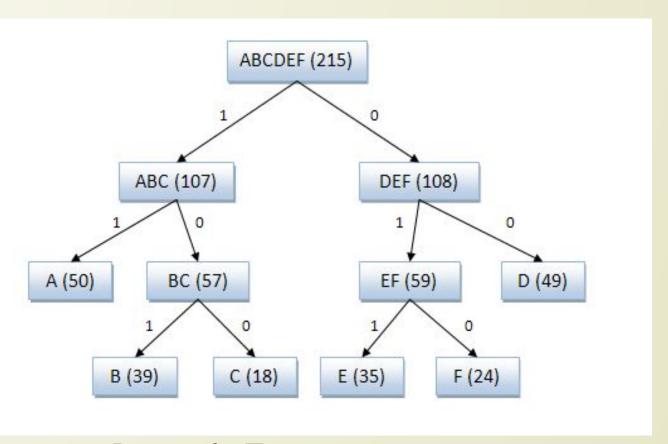


Рисунок 3 – Пример кодового дерева

□ Выполнила: ст.гр.АБ-46 Федюнина Алёна Олеговна

Код Хаффмана

- Алгоритм Хаффмана жадный алгоритм оптимального префиксного кодирования алфавита с минимальной избыточностью.
- Этот метод кодирования состоит из двух основных этапов:
- 1) Построение оптимального кодового дерева.
- 2) Построение отображения код-символ на основе построенного дерева.

Код Хаффмана

□ Таблица 1 – исходные данные

Символы	Вероятности		
a ₁	0,2		
\mathbf{a}_2	0,07		
a ₃	0,3		
a4	0,03		
a ₅	0,4		

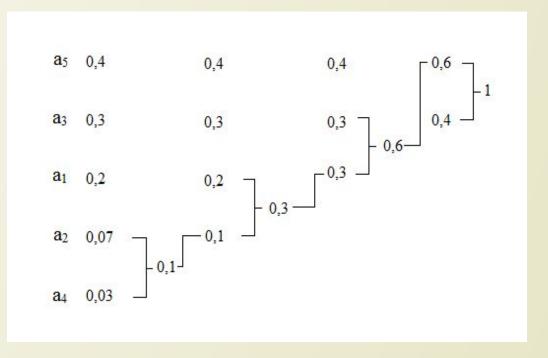


Рисунок 4 – Код Хаффмана

□ Выполнила: ст.гр.АБ-46 Федюнина Алёна Олеговна

Код Хаффмана

Теперь строим дерево кода Хаффмана:

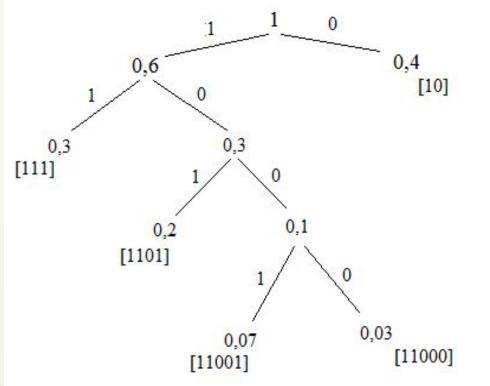


Рисунок 5 – Построение дерева Хаффмана

Коды Хэмминга — вероятно, наиболее известный из первых самоконтролирующихся и самокорректирующихся кодов.
 Позволяет исправлять одиночную ошибку и находить двойную.

 $t_{\rm of}$ – обнаруживающая способность, т.е. сколько ошибок может обнаружить;

t_и – исправляющая способность, т.е. сколько ошибок может исправить;

$$1 + \frac{1}{00} = \frac{1}{0}$$

$$t_{00} = d_0 - 1$$
 $t_{10} = \begin{cases} \frac{d_0 - 1}{2}, & \text{где } d_0 - \text{нечетная} \\ \frac{d_0}{2}, & \text{где где } d_0 - \text{четная} \end{cases}$

Рассмотрим правила построения кода Хэмминга при $K=16 \text{ и d}_0=3$:

Определяем количество информационных разрядов из общего количества числа сообщений.

$$k = \log_2 K = \log_2 16 = 4$$

Строим производящую матрицу:

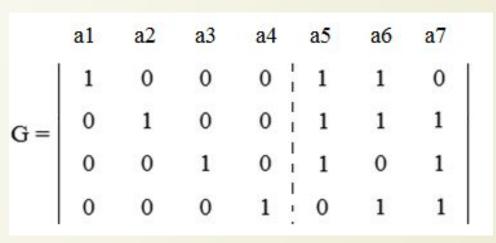
Строим единичную матрицу размером $k \times k$

$$G = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Рисунок 6 — единичная матрица размером 4×4

К информационным элементам дописываем проверочные по следующим правилам:

- число единиц дописываемых разрядов должно быть не менее d_0 -1 («1» $\geq d_0$ -1)
- разница между дописываемыми строками должно быть не менее, чем d_0 -2 («d» $\geq d_0$ -2)
- $((1)) \ge 3-1 = 2$



$$n = k+r = 7$$

$$k = 4$$

$$r = 3$$

Рисунок 7 – производящая матрица

- Правила формирования проверочной матрицы:
- 1) Транспонируем дописанную подматрицу производящей матрицы;
- 2) Дописываем к транспонированной подматрицы единичной матрицы гхг

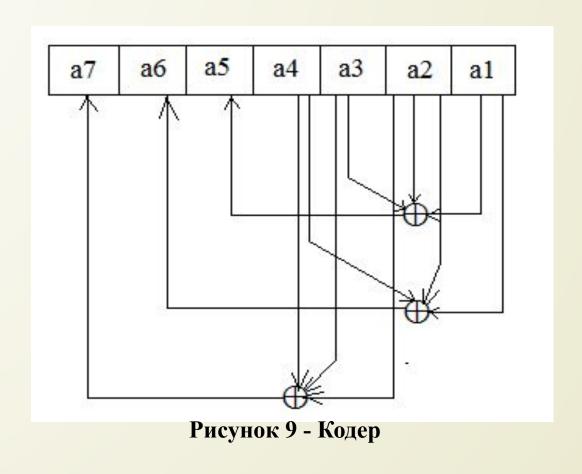
Выполнила: ст.гр.АБ-46 Федюнина Алёна Олеговна

- 1) Если на месте проверочного элемента проверочной матрицы стоит 1, то этот проверочный элемент будет равен сумме тех информационных элементов, на местах которых в этой строке проверочной матрицы стоят единицы.
- Проверочные элементы формируются в проверочной матрице, но работают только для производящей:

$$a_5 = a_1 \oplus a_2 \oplus a_3;$$

$$a_6 = a_1 \oplus a_2 \oplus a_4;$$

$$a_7 = a_2 \oplus a_3 \oplus a_4;$$



- При декодировании определяют синдром ошибки.
- Каждый элемент синдрома определяется как сумма не нулевых элементов в соответствующей строке проверочной матрицы.

$$b_1 = a_1 \oplus a_2 \oplus a_3 \oplus a_5$$

$$b_2 = a_1 \oplus a_2 \oplus a_4 \oplus a_6$$

$$b_3 = a_2 \oplus a_3 \oplus a_4 \oplus a_7$$

□ Кодовая комбинация – 1010101

$$b_1 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$b_2 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$b_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

Синдром смотреть в проверочной матрице Н

Ошибка в первом элементе а1

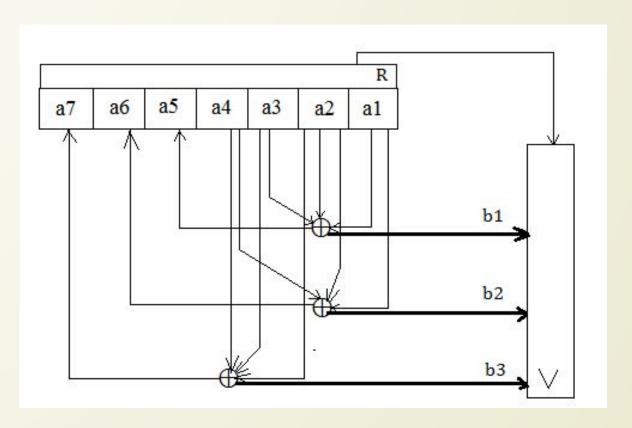


Рисунок 8 – декодер с обнаружением ошибки

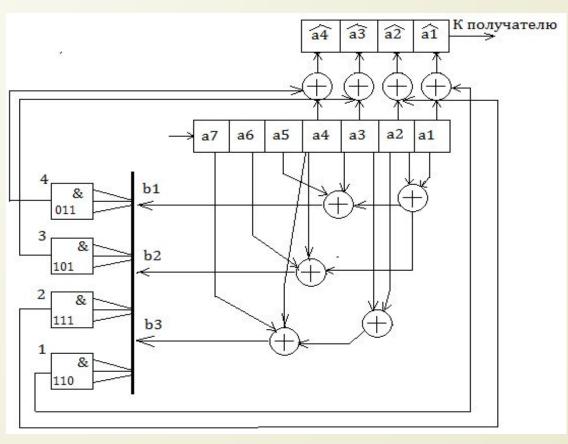


Рисунок 7 – декодер с исправлением ошибки

Выполнила: ст.гр.АБ-46 Федюнина Алёна Олеговна

ЗАКЛЮЧЕНИЕ

Ознакомились с линейным кодированием, узнали, где его применяют, увидели его классификацию. Подробно рассмотрели несколько примеров осуществления кода Шеннона-Фано, Хэмминга и Хаффмана, узнали определение помехоустойчивых кодов.

СПАСИБО ЗА ВНИМАНИЕ!