
Task Parallel Library
Data Parallelism Patterns

2016-07-19 by O. Shvets
Reviewed by S. Diachenko

•Introduction to Parallel Programming
•Parallel Loops
•Parallel Aggregation

•Introduction to Parallel Programming
•Parallel Loops
•Parallel Aggregation

• Hardware trends predict more cores instead of faster clock speeds
• One core is loaded at 100%, the rest of the cores are inactive
• Solution - parallel multithreaded programming
• The complexities of multithreaded programming

• Thread creation
• Thread synchronization
• Hard reproducible bugs

Multicore system features

• Some parallel applications can be written for specific hardware
• For example, creators of programs for a console gaming

platform have detailed knowledge about the hardware
resources that will be available at run time (number of cores,
details of the memory architecture)

• In contrast, when you write programs that run on general-purpose
computing platforms you may not always know how many cores
will be available

• With potential parallelism applications will run
• fast on a multicore architecture

• The degree of parallelism is not encoded tough to get a
win on the future multicore processors

• the same speed as a sequential program when there is only
one core available

Potential parallelism

• Decomposition
• Coordination
• Scalable Sharing

Parallel programming patterns aspects

• Tasks are sequential operations that work together to perform a
larger operation

• Tasks are not threads
• While a new thread immediately introduces additional

concurrency to your application, a new task introduces only
the potential for additional concurrency

• A task’s potential for additional concurrency will be realized
only when there are enough available cores

• Tasks must be
• large (running for a long time)
• independent
• numerous (to load all the cores)

Decomposition

• Tasks that are independent of one another can run in parallel
• Some tasks can begin only after other tasks complete
• The order of execution and the degree of parallelism are

constrained by
• control flow (the steps of the algorithm)
• data flow (the availability of inputs and outputs)

• The way tasks are coordinated depends on which parallel pattern
you use

Coordination

• Tasks often need to share data
• Synchronization of tasks

• Every form of synchronization is a form of serialization
• Adding synchronization (locks) can reduce the scalability of

your application
• Locks are error prone (deadlocks) but necessary in certain

situations (as the goto statements of parallel programming)
• Scalable data sharing techniques:

• use of immutable, readonly data
• limiting your program’s reliance on shared variables
• introducing new steps in your algorithm that merge local

versions of mutable state at appropriate checkpoints
• Techniques for scalable sharing may involve changes to an existing

algorithm

Scalable sharing of data

• Understand your problem or application and look for potential
parallelism across the entire application as a whole

• Think in terms of data structures and algorithms; don’t just
identify bottlenecks

• Use patterns

Parallel programming design approaches

• Concurrency is a concept related to multitasking and
asynchronous input-output (I/O)
• multiple threads of execution that may each get a slice of time

to execute before being preempted by another thread, which
also gets a slice of time

• to react to external stimuli such as user input, devices, and
sensors

• operating systems and games, by their very nature, are
concurrent, even on one core

• The goal of concurrency is to prevent thread starvation

Concurrency & parallelism

• With parallelism, concurrent threads execute at the same time on
multiple cores

• Parallel programming focuses on improving the performance of
applications that use a lot of processor power and are not
constantly interrupted when multiple cores are available

• The goal of parallelism is to maximize processor usage across all
available cores

Concurrency & parallelism

• Amdahl’s law says that no
matter how many cores you
have, the maximum speedup
you can ever achieve is (1 /
percent of time spent in
sequential processing)

The limits of parallelism

• Whenever possible, stay at the highest possible level of
abstraction and use constructs or a library that does the parallel
work for you

• Use your application server’s inherent parallelism; for example,
use the parallelism that is incorporated into a web server or
database

• Use an API to encapsulate parallelism, such as Microsoft Parallel
Extensions for .NET (TPL and PLINQ)
• These libraries were written by experts and have been

thoroughly tested; they help you to avoid many of the
common problems that arise in parallel programming

• Consider the overall architecture of your application when thinking
about how to parallelize it

Parallel programming tips

• Use patterns
• Restructuring your algorithm (for example, to eliminate the need

for shared data) is better than making low-level improvements to
code that was originally designed to run serially

• Don’t share data among concurrent tasks unless absolutely
necessary
• If you do share data, use one of the containers provided by

the API you are using, such as a shared queue
• Use low-level primitives, such as threads and locks, only as a last

resort
• Raise the level of abstraction from threads to tasks in your

applications

Parallel programming tips

• Based on the .NET Framework 4
• Written in C #
• Use

• Task Parallel Library (TPL)
• Parallel LINQ (PLINQ)

Code examples of this presentation

•Introduction to Parallel Programming
•Parallel Loops
•Parallel Aggregation

Parallel programming patterns

• Use the Parallel Loop pattern when you need to perform the same
independent operation for each element of a collection or for a
fixed number of iterations
• The steps of a loop are independent if they don’t write to

memory locations or files that are read by other steps
• The word “independent” is a key part of the definition of this

pattern
• Unlike a sequential loop, the order of execution isn’t defined for a

parallel loop

Parallel Loops

Parallel.For

Parallel.ForEach

• Almost all LINQ-to-Objects expressions can easily be converted to
their parallel counterpart by adding a call to the AsParallel
extension method

• PLINQ’s ParallelEnumerable class has close to 200 extension
methods that provide parallel queries for ParallelQuery<T> objects

Parallel LINQ (PLINQ)

• Use PLINQ’s ForAll extension method in cases where you want to
iterate over the input values but you don’t want to select output
values to return

• The ForAll extension method is the PLINQ equivalent of
Parallel.ForEach

• It’s important to use PLINQ’s ForAll extension method instead of
giving a PLINQ query as an argument to the Parallel.ForEach
method

PLINQ ForAll

• The .NET implementation of the Parallel Loop pattern ensures that
exceptions that are thrown during the execution of a loop body
are not lost
• For both the Parallel.For and Parallel.ForEach methods as well

as for PLINQ, exceptions are collected into an
AggregateException object and rethrown in the context of the
calling thread

Exceptions

• Parallel loops
• 12 overloaded methods for Parallel.For
• 20 overloaded methods for Parallel.ForEach
• PLINQ has close to 200 extension methods

• Parallel loops options
• a maximum degree of parallelism
• hooks for external cancellation
• monitor the progress of other steps (for example, to see if

exceptions are pending)
• manage task-local state

Parallel loops variations

• Writing to shared variables

• Using properties of an object model

Dependencies between loop iterations

• Referencing data types that are not thread safe
• Loop-carried dependence

• Sometimes, it’s possible to use a parallel algorithm in cases of
loop-carried dependence (parallel scan and parallel dynamic
programming are examples of these patterns)

Dependencies between loop iterations

• Sequential iteration

• With parallel loops more than one step may be active at the same
time, and steps of a parallel loop are not necessarily executed in
any predetermined order

Breaking out of loops early

• Use Break to exit a loop early while ensuring that lower-indexed
steps complete

Parallel Break

• Calling Break doesn’t stop other steps that might have already
started running

• To check for a break condition in long-running loop bodies and exit
that step immediately
• ParallelLoopState.LowestBreakIteration.HasValue == true
• ParallelLoopState.ShouldExitCurrentIteration == true

• Because of parallel execution, it’s possible that more than one step
may call Break
• In that case, the lowest index will be used to determine which

steps will be allowed to start after the break occurred
• The Parallel.ForEach method also supports the loop state Break

method

Parallel Break

ParallelLoopResult

• Use Stop to exit a loop early when you don’t need all
lower-indexed iterations to run before terminating the loop

Parallel Stop

External Loop Cancellation

Special handling of small loop bodies

• The number of ranges that will be created by a Partitioner object
depends on the number of cores in your computer

• The default number of ranges is approximately three times the
number of those cores

• You can use an overloaded version of the Partitioner.Create
method that allows you to specify the size of each range

Special handling of small loop bodies

• You usually let the system manage how iterations of a parallel loop
are mapped to your computer’s cores, in some cases, you may
want additional control
• Reducing the degree of parallelism is often used in

performance testing to simulate less capable hardware
• Increasing the degree of parallelism to a number larger than

the number of cores can be appropriate when iterations of
your loop spend a lot of time waiting for I/O operations to
complete

Controlling the degree of parallelism

• The PLINQ query in the code example will run with a maximum of
eight tasks at any one time

• If you specify a larger degree of parallelism, you may also want to
use the ThreadPool class’s SetMinThreads method so that these
threads are created without delay

Controlling the degree of parallelism

• Sometimes you need to maintain thread-local state during the
execution of a parallel loop
• For example, you might want to use a parallel loop to initialize

each element of a large array with random values

Task-local state in a loop body

Random initialization of the large array

• Calling the default Random constructor twice in short succession
may use the same random seed
• Provide your own random seed to prevent duplicate random

sequences
• The Random class isn’t the right random generator for all

simulation scenarios
• If your application really requires statistically robust

pseudorandom values, you should consider using the
RNGCryptoService Provider class or a third-party library

Random class in parallel

• You can substitute custom task scheduling logic for the default
task scheduler that uses ThreadPool worker threads

• It isn’t possible to specify a custom task scheduler for PLINQ
queries

Using a custom task scheduler

• Step size other than one
• Hidden loop body dependencies
• Small loop bodies with few iterations
• Processor oversubscription and undersubscription
• Mixing the Parallel class and PLINQ
• Duplicates in the input enumeration

Anti-Patterns

• Adaptive partitioning
• Parallel loops in .NET use an adaptive partitioning technique where

the size of units of work increases over time
• Adaptive partitioning is able to meet the needs of both small and

large input ranges
• Adaptive concurrency

• The Parallel class and PLINQ work on slightly different threading
models in the .NET Framework 4

• Support for nested loops
• Support for server applications

• The Parallel class attempts to deal with multiple AppDomains in
server applications in exactly the same manner that nested loops
are handled

• If the server application is already using all the available thread pool
threads to process other ASP.NET requests, a parallel loop will only
run on the thread that invoked it

Parallel loops design notes

•Introduction to Parallel Programming
•Parallel Loops
•Parallel Aggregation

Parallel programming patterns

• The pattern is more general than calculating a sum
• It works for any binary operation that is associative
• The .NET implementation expects the operations to be

commutative
• The pattern uses unshared, local variables that are merged at the

end of the computation to give the final result
• Using unshared, local variables for partial, locally calculated

results is how the steps of a loop can become independent of
each other

• Parallel aggregation demonstrates the principle that it’s usually
better to make changes to your algorithm than to add
synchronization primitives to an existing algorithm

The Parallel Aggregation pattern

• Sequential version

• LINQ expression

Calculating a sum

• PLINQ

• PLINQ has query operators that count the number of elements and
calculate the average, maximum, or minimum

• PLINQ also has operators that create and combine sets (duplicate
elimination, union, intersection, and difference), transform sequences
(concatenation, filtering, and partitioning) and group (projection)

• If PLINQ’s standard query operators aren’t what you need, you can
also use the Aggregate extension method to define your own
aggregation operators

Calculating a sum

• PLINQ is usually the recommended approach
• You can also use Parallel.For or Parallel.ForEach to implement the

parallel aggregation pattern
• The Parallel.For and Parallel.ForEach methods require more

complex code than PLINQ

Parallel aggregation pattern in .NET

• The PLINQ Aggregate extension method includes an overloaded
version that allows a very general application of the parallel
aggregation pattern

Using PLINQ aggregation with range selection

• Aggregation using Parallel For and ForEach

Design notes

• Aggregation in PLINQ does not require the developer to use locks
• The final merge step is expressed as a binary operator that

combines any two partial result values (that is, two of the
subtotals) into another partial result

• Repeating this process on subsequent pairs of partial results
eventually converges on a final result

• One of the advantages of the PLINQ approach is that it requires
less synchronization, so it’s more scalable

Design notes

USA HQ
Toll Free: 866-687-3588
Tel: +1-512-516-8880

Ukraine HQ
Tel: +380-32-240-9090

Bulgaria
Tel: +359-2-902-3760

Germany
Tel: +49-69-2602-5857

Netherlands
Tel: +31-20-262-33-23

Poland
Tel: +48-71-382-2800

UK
Tel: +44-207-544-8414

EMAIL
info@softserveinc.com

WEBSITE:
www.softserveinc.com

Task Parallel Library
Data Parallelism Patterns

