Parallel programming technologies on hybrid architectures

Streltsova O.I., Podgainy D.V. Laboratory of Information Technologies Joint Institute for Nuclear Research

SCHOOL ON JINR/CERN GRID AND ADVANCED INFORMATION SYSTEMS Dubna, Russia *23, October 2014*

US COMPUTATIONS TEAM HybriLIT

Goal: Efficient parallelization of complex numerical problems in computational physics

Plan of the talk:

- I.Efficient parallelization of complex numerical problems in
- computational physics
- •Introduction
- •Hardware and software
- •Heat transfer problem
- II. GIMM FPEIP package and MCTDHB package
- III. Summary and conclusion

US COMPUTATIONS TEAM, HybriLIT

TOP500 List – June 2014

TOP500 List – June 2014

Performance Share of Accelerators

Source:

http://www.top500.org/blog/slides-for-the-43rd-top500-list-now-available/

TOP500 List – June 2014

Accelerators

Source:

http://www.top500.org/blog/slides-for-the-43rd-top500-list-now-available/

«Lomonosov» Supercomputer , MSU

>**5000** computation nodes Intel Xeon X5670/X5570/E5630, PowerXCell 8i ~36 Gb DRAM **2** x **nVidia Tesla** X2070 6 Gb GDDR5 (448 CUDA-cores) InfiniBand QDR

MFY

NVIDIA Tesla K40 "Atlas" GPU Accelerator

- **Custom languages such as CUDA and OpenCL**
- **Specifications**
- **2880** CUDA GPU cores
- **Peak precision floating point performance 4.29** TFLOPS single-precision **1.43** TFLOPS double-precision
- **memory**
	- **12 GB** GDDR5

Memory bandwidth up to **288** GB/s

Supports Dynamic Parallelism and HyperQ features

GENEOUS COMPUTATIONS TEAM, HybriLIT

«Tornado SUSU» Supercomputer, South Ural State University, Russia

(June 2014).

480 computing units (compact and powerful computing blade-modules) **960 processors Intel Xeon X5680**

 (Gulftown, 6 cores with frequency 3.33 GHz) 384 coprocessors Intel Xeon Phi SE10X (61 cores with frequency 1.1 GHz)

Intel® Xeon Phi™ Coprocessor

Intel Many Integrated Core Architecture (Intel **MIC**) is a multiprocessor computer architecture developed by Intel.

At the end of 2012, Intel launched the first generation of the Intel Xeon Phi product family.

Intel Xeon Phi 7120P

Clock Speed **1.24 GHz** L2 Cache **30.5 MB** TDP **300 W** Cores **61** More threads **244**

The core is capable of supporting **4 threads** in hardware.

HybriLIT: heterogeneous computation cluster

HybriLIT: heterogeneous computation cluster

HETEROGENEOUS COMPUTATIONS TEAM, HybriLIT

What we see: modern Supercomputers are hybrid with heterogeneous nodes

• Multiple CPU cores with share memory • Multiple GPU

• Multiple CPU cores with share memory • Multiple Coprocessor

• Multiple CPU • GPU **Coprocessor**

Parallel technologies: levels of parallelism

 How to control hybrid hardware: MPI – OpenMP – CUDA - OpenCL ...

In the last decade novel computational facilities and technologies has become available: MPI-OpenMP-CUDA-OpenCL...

It is not easy to follow modern trends. Modification of the existing codes or developments of new ones ?

HETEROGENEOUS COMPUTATIONS TEAM, HybriLIT

Problem HCE: heat conduction equation

Initial boundary value problem for the heat conduction equation:

$$
\begin{cases} \frac{\partial u}{\partial t} = Lu + f(x, y, t), (x, y) \in D, t > 0; \\ u|_{F=0} = u_0(x, y), (x, y) \in \overline{D}; u| = \mu(x, y, t), t \ge 0, \end{cases}
$$

• D – rectangular domain with boundary *Г* :

$$
\overline{D} = D\mathfrak{X} + \mathfrak{Y} = \mathfrak{X}\{(x, x) : x_L \not\subseteq (x_R, y_L \leq x_R)\}
$$

L is a linear differential operator acting on $u(x, y, t)$: \bullet

$$
L = L_1 + L_2,
$$

\n
$$
L_1 u = \frac{\partial}{\partial x} K_1(x, y, t) \frac{\partial u}{\partial x},
$$

\n
$$
L_2 u = \frac{\partial}{\partial y} K_2(x, y, t) \frac{\partial u}{\partial y}.
$$

Problem HCE: computation scheme

Difference scheme: Explicit, implicit, … ?

Locally one-dimensional scheme:

reduction of a multidimensional problem to a chain of one-dimensional problems

Let:
$$
\overline{\omega} = \overline{\omega}_{\tau} \times \overline{\omega}_{h_x h_y}
$$
:
\n $\overline{\omega}_{h_x h_y} = \overline{\omega}_{h_x} \times \overline{\omega}_{h_y}, \overline{\omega}_{\tau} = \{t_j = j\tau, j = 0, N_t - 1\},$
\n $\overline{\omega}_{h_x} = \{x_{i_1} = x_L + i_1 h_x, i_1 = 0, N_x - 1\},$
\n $\overline{\omega}_{h_y} = \{y_{i_2} = y_L + i_2 h_y, i_2 = 0, N_y - 1\}$
\n• *L* is a linear differential operator acting on $u(x, y, t)$:

Problem HCE: computation scheme

Step 1: Difference equations *(Ny-2)* on *x* direction

$$
\frac{v_{(1)}^{j+1} - v_{(2)}^j}{\tau} = \Lambda_1 v_{(1)}^{j+1} + \varphi_1, \ \ \Lambda_1 v = \left(a_1 v_{\overline{x}}\right)_x, \ \ a_1 = K_1 \left(x_{\overline{i_1 - \frac{1}{2}}}, y_{\overline{i_2}}, t\right),
$$

Step 2: Difference equations *(Nx-2)* on *y* direction

$$
\frac{v_{(2)}^{j+1} - v_{(1)}^j}{\tau} = \Lambda_2 v_{(2)}^{j+1} + \varphi_2, \quad \Lambda_2 v = \left(a_2 v_{\overline{y}}\right)_y, \quad a_2 = K_2 \left(x_{i_1}, y_{i_2 - \frac{1}{2}}, t\right),
$$

$$
\left|v_{(\alpha)}^j = v_{(\alpha)}(x_{i_1}, y_{i_2}, t_j), \ \alpha = 1, 2; \ (x, y, t) \in \omega; \ \ x_{i_1 - \frac{1}{2}} = x_{i_1} - \frac{1}{2}h_x, \ \ y_{i_2 - \frac{1}{2}} = y_{i_2} - \frac{1}{2}h_y.
$$

under the additional conditions of conjugation, boundary conditions and normalization condition

$$
v_{(2)}(x, y, t_j) = v_{(1)}(x, y, t_{j+1}), \quad j = \overline{0, N_t - 2},
$$

$$
v_{(2)}(x, y, 0) = u_0(x, y), (x, y) \in \overset{\circ}{\mathcal{B}}_{h_x h_y};
$$

$$
v_{(\alpha)}^j = \mu(x, y, t_j), \quad \alpha = 1, 2, (x, y) \in \gamma^{\alpha};
$$

$$
\varphi_1 + \varphi_2 = f
$$

Problem HCE: parallelization scheme

Parallel Technologies

OpenMP realization of parallel algorithm

OpenMP (**O**pen **specifications for M**ulti-**P**rocessing)

OpenMP (**Open specifications for M**ulti-**P**rocessing) is an API that supports multi-platform shared memory multiprocessing programming in **Fortran, C, C++.**

OpenMP (**O**pen **specifications for M**ulti-**P**rocessing)

```
#include \lestdio.h>
1.#include <omp.h>
\overline{2}.
3.4.int main (int argc, char *argy[]) {
5.
        const int N = 1000;
6.
        int i, nthreads;
7.double A[N];
8.nthreads = comp\_get\_num\_threads();
9.
        printf("Number of thread = %d \n, nthreads);
10.
11.#pragma omp parallel for
      for (i = 0; i < N; i++) {
12.13.
         A[i] = function(i);
      \left\{ \right\}14.
15.
       return 0;
16.}
```
Library

routines

Use flag **-openmp** to compile using Intel compilers: **icc –openmp code.c –o code**

Compiler directive

OpenMP realization: Multiple CPU cores that share memory

Table 2. OpenMP realization problem 1: execution time and acceleration (CPU Xeon *K100 KIAM RAS*)

OpenMP realization: Intel® Xeon Phi™ Coprocessor

Compiling: icc -openmp -O3 -vec-report=3 -mmic algLocal_openmp.cc –o alg_openmp_xphi

Table 3. OpenMP realization: Execution time and Acceleration (Intel Xeon Phi, LIT).

OpenMP realization: Intel® Xeon Phi™ Coprocessor Optimizations

The **KMP** AFFINITY Environment Variable: The Intel[®] OpenMP^{*} runtime library has the ability to bind OpenMP threads to physical processing units. The interface is controlled using the **KMP_AFFINITY** environment variable.

CUDA (Compute Unified Device Architecture) programming model, CUDA C

CUDA (Compute Unified Device Architecture) programming model, CUDA C

Source:

http://blog.goldenhelix.com/?p=374

HETEROGENEOUS COMPUTATIONS GROUP, HybriLIT

CUDA (Compute Unified Device Architecture) programming model

Source:

http://www.realworldtech.com/includes/images/articles/g100-2.gif

Device Memory Hierarchy

HETEROGENEOUS COMPUTATIONS GROUP, HybriLIT

Function Type Qualifiers

Threads and blocks

int tid = threadIdx. $x +$ blockIdx. $x *$ blockDim. x

HETEROGENEOUS COMPUTATIONS GROUP, HybriLIT

Scheme program on CUDA C/C++ and C/C++

HETEROGENEOUS COMPUTATIONS GROUP, HybriLIT

Compilation

Compilation tools are a part of CUDA SDK •NVIDIA CUDA Compiler Driver NVCC

•Full information http://docs.nvidia.com/cuda/cuda-compiler-driver -nvcc/#axzz37LQKVSFi

nvcc -arch=compute_35 test_CUDA_deviceInfo.cu -o test_CUDA –o deviceInfo

GENEOUS COMPUTATIONS GROUP, HybriLIT

Some GPU-accelerated Libraries

Source: https://developer.nvidia.com/cuda-education. (Will Ramey ,NVIDIA Corporation)

Problem HCE: parallelization scheme

Problem HCE: CUDA realization

Initialization: parameters of the problem and the computational scheme are copied in constant memory GPU. Initialization of descriptors: *cuSPARSE* **functions Calculation of array elements lower, upper and main diagonals and right side of SLAEs (1) : Kernel_Elements_System_1 <<<blocks, threads>>>(**) **Parallel solution of (***Ny-2)* **SLAEs in the direction** *x* **using cusparseDgtsvStridedBatch() Calculation of array elements lower, upper and main diagonals and right side of SLAEs (1) : Kernel_Elements_System_2 <<<blocks, threads>>>(**) **Parallel solution of (***Nx-2)* **SLAEs in the direction** *x* **using cusparseDgtsvStridedBatch()**

CUDA realization of parallel algorithm: efficiency of parallelization

Table 1. CUDA realization: Execution time and Acceleration

• L is a linear differential operator acting on $u(x, y, t)$:

Problem HCE : analysis of results

Hybrid Programming: MPI+CUDA: on the Example of GIMM FPEIP Complex

GIMM FPEIP : package developed for simulation of thermal processes in materials irradiated by heavy ion beams

Alexandrov E.I., Amirkhanov I.V., Zemlyanaya E.V., Zrelov P.V., Zuev M.I., Ivanov V.V., Podgainy D.V., Sarker N.R., Sarkhadov I.S., Streltsova O.I., Tukhliev Z. K., Sharipov Z.A. (LIT)

 Principles of Software Construction for Simulation of Physical Processes on Hybrid Computing Systems (on the Example of GIMM_FPEIP Complex) // Bulletin of Peoples' Friendship University of Russia. Series "Mathematics. Information Sciences. Physics". — 2014. — No 2. — Pp. 197-205.

GIMM FPEIP : package for simulation of thermal processes in materials irradiated by heavy ion beams

To solve a system of coupled equations of heat conductivity which are a basis of the thermal spike model in cylindrical coordinate system

• L is a linear differential operator acting on $u(x, y, t)$:

• L is a linear differential operator acting on $u(x, y, t)$:

L is a linear differential operator acting on $u(x, y, t)$:

GIMM FPEIP: Logical scheme of the complex

Using Multi-GPUs

MPI, MPI+CUDA (CICC LIT, К100 KIAM)

Hybrid Programming: MPI+OpenMP, MPI+OpenMP+CUDA

MultiConfigurational Ttime Dependnet Hartree (for) Bosons

Ideas, methods, and parallel implementation of the MCTDHB package: Many-body theory of bosons group in Heidelberg, Germany http://MCTDHB.org

MCTDHB founders:

Lorenz S. Cederbaum, Ofir E. Alon, Alexej I. Streltsov

Since 2013 cooperation with LIT: the development of new hybrid implementations package

The MultiConfigurationalTtimeDependnetHartree (for) Bosons method: PRL 99, 030402 (2007), PRA 77, 033613 (2008) It solves TDSE numerically exactly – see for benchmarking PRA 86, 063606 (2012)

Time-Dependent Schrödinger equation governs the physics of trapped ultra-cold atomic clouds

$$
i\mathbb{N}\frac{\partial}{\partial t}\Psi(\mathbf{x},t)=\hat{\mathbb{H}}\Psi(\mathbf{x},t)
$$

 \leftarrow

One has to specify initial condition $\mathbb{P}(\mathbb{X},t=0)=\mathbb{P}(\mathbb{F}_{1},\mathbb{F}_{2},\ldots,\mathbb{F}_{N},t=0)$

and propagate *Ψ(*x*,t)→ Ψ(*x*,t +***Δt)**

To solve the Time-Dependent Many-Boson Schrödinger Equation we apply the MultiConfigurationalTtimeDependnetHartree (for) Bosons method: PRL 99, 030402 (2007), PRA 77, 033613 (2008) It solves TDSE numerically exactly – see for benchmarking PRA 86, 063606 (2012)

All the terms of the Hamiltonian are under experimental control and can be manipulated

BECs of alkaline, alkaline earth, and lanthanoid atoms (⁷Li, ²³Na, ³⁹K, ⁴¹K, ⁸⁵Rb, ⁸⁷Rb, ¹³³Cs, ⁵²Cr, ⁴⁰Ca, ⁸⁴Sr, ⁸⁶Sr, ⁸⁸Sr, ¹⁷⁴Yb,¹⁶⁴Dy,

 \rightarrow V(r,t)

Magneto-optical

tra

The interatomic interaction can be widely varied with a magnetic Feshbach resonance… (Greiner Lab at Harvard. *)*

1D-2D-3D: Control on dimensionality by changing the aspect ratio of the

 $\mathbf{V}(x, y, z) = \frac{1}{2} m \omega_x^2 x^2 + \frac{1}{2} m \omega_y^2 y^2 + \frac{1}{2} m \omega_z^2 z^2$

Dynamics N=100: sudden displacement of trap and sudden quenches of the repulsion in 2D

Two generic rgimes: (i) non-violent (under-a-barrier) and Two generic regimes: (i) non-violent (under-a-barrier) and (ii) Explosive (over-a-barrier) (ii) Explosive (over-a-barrier)

List of Applications **Conclusion**

• Modern development of computer technologies (multi-core processors, GPU , coprocessors and other) require the development of new approaches and technologies for parallel programming. • Effective use of high performance computing systems allow accelerating of researches, engineering development and creation of a specific device.

Thank you for attention!

