
The Role of
Programming
Languages

Chapter 1:
Programming Languages: Concepts
and Constructs by Ravi Sethi

What is a Programming Language?
● a tool for instructing machines
● a means of communicating between

programmers
● a vehicle for expressing high-level designs
● a notation for algorithms
● a way of expressing relationships between

concepts
● a tool for experimentation
● a means for controlling computerized devices

Language Designers

● Balance
● … making computing convenient for

programmers (a fool with a tool is still a fool)
● and making efficient use of computing

machines (... Why do I have to state this?)

Levels

● Gross distinction between programming
language

● based on readability
● based on independence
● based on purpose (specific … general)

Levels

● Machine level language
● Assembly level language
● High-level language (3GL)
● sometimes 4GL - fourth Generation

Language

Machine Level

● 00000010101111001010
● 00000010101111001000
● 00000011001110101000
● Can you tell what this code fragment does?
● Can it be executed on any machine?
● Is it general purpose?

Assembly Language

● Look at figure 1.1
● LD R1,”0”
● LD R2, M
● ST R2, R1
● … real assembly used mnemonics
● Add A(M), …. Had to do your own indexing
● What does this program do?

Assembly Language

● Look at page 63 in your text and figure 3.1
● Can you understand what it does now?

Basic Concepts of a RAM machine

● Memory: addresses, contents
● Program: instructions
● input/output:(files)

20

2000

A 10

200A

c

A = 3 + c

lvalue-> address

rvalue->contents

High Level

● Readable familiar notations
● machine independence
● availability of program libraries
● consistency check (check data types)

Problems of Scale
● Changes are easy to make
● isolated program fragments can be

understood
● BUT… one small bug can lead to disaster
● read the NOT story about Mariner rockets
● Notice how the chairman does not

understand that a “small” problem can lead
to devastating result and why it was not
caught

Bugs

● Programming testing can be used to show
the presence of bugs, but never their
absence!

● Dijkstra
● Programming Languages can help
● readable and understandable
● organize such that parts can be understood

Role of Programming Languages

● Art (science) of programming is organizing
complexity

● Must organize in such a way that our limited
powers are sufficient to guarantee that the
computation will establish the desired effect

● (Dijkstra - structured programming,
sometimes referred to as goto-less
programming)

Programming Paradigms

● Imperative - action oriented, sequence of
actions

● Functional - LISP, symbolic data processing
● Object-Oriented
● Logic - Prolog, logic reasoning
● Sequential and concurrent

Language Implementation

● Compiler - source code it translated into
machine code (all at once)

● Interpreter - machine is brought up to the
language (one statement at a time)

Compiled C

Sourc
e

 code
 in C

Pre-
procce

s
sor

compil
er

Linker
or

assemble
r

Machine
 code
(exe)

Loader
Machine

codes

.o
file
s

Pre
process

ed
code

Interpreted Code

● Each instruction is interpreted by machine
interpreter

● does not produce object code

Comparisons

● Compilation more efficient
● interpreted more flexible

Testing your skill

● Do 1.4 (a,b,c) in PL book
● Do 1.5
● For each file, include a file header:

● what this file accomplishes - description
● what “entities” are in this file
● dependencies
● structure

Testing your skill

● For each module, include a module header:
● what this module accomplishes - description
● dependencies (parameters(in, out, inout), global

data (accessed or modified), called by (fanin),
calls (fanout))

● restrictions
● programmer
● date created
● modifications

Testing your skill

● For the test cases, include a test header:
● for each input, put the expected output, date

executed, name of tester and passed/failed

