
Dispose Pattern in C#

Vyacheslav Koldovskyy
10/2014

Agenda

▪Destructor and Finalizer in C#
▪IDisposable and RAII
▪Dispose Pattern for Managed and Unmanaged
Resources
▪Objects with Critical Finalization
▪Simplified Dispose Pattern
▪Recommended Links

Destructor and Finalizer in C#

Destructor in C#

▪ Destructor in C# language created with tilde (“~”) is syntax sugar
for Finalize method, to which it is converted on compilation stage
of the application

▪ That is why it is correct to say that destructor and finalizer is the
same in C#

▪ While “destructor” term has special meaning in programming, it
is better to say that C# does not have destructor at all, we will
use term “finalizer” instead

4

Finalizer Problem

▪Time of finalizer call is not defined in .NET, that is
why finalizers do not guarantee:
1. Time of resource release

2. Fact of resource release

5

IDisposable and RAII

Interface IDisposable

▪ Provides a mechanism for releasing unmanaged resources.

7

RAII Idiom

▪RAII – Resource Acquisition Is Initialization

▪RAII means that resource should be allocated in
constructor and released in destructor

▪OO languages with direct resource management
completely corresponds to RAII

8

Keyword using

▪Keyword “using” not completely implements RAII

9

// Opening file inside using block
using (FileStream file = File.OpenRead("foo.txt"))
{
 // Leaving method on condition
 if (someCondition) return;
 // File closes automatically
}

// What if file opens ouside using block?
FileStream file2 = File.OpenRead("foo.txt");

Method Dispose

▪Dispose method differs from destructor in that
way that it not destroys the object but destroys
the resource
▪Danger Consequences of dispose call: object is
not destroyed but resource is not available and
any further method call or access to property is
potentially dangerous

10

Dispose Pattern for Managed and Unmanaged
Resources

Dispose Pattern

▪Taking into account all previously mentioned, we
have to implement special dispose pattern in
.NET to ensure that resources are released in
proper way

12

Managed and Unmanaged Resources

▪Unmanaged resources – IntPtr, socket descriptors, any OS
objects obtained with WinAPI etc.

▪ If unmanaged resource is wrapped into class with RAII it
becomes managed resource

▪Any of two types of resources implies different
approaches to work with them

13

Sample Resource Wrapper

14

class NativeResourceWrapper : IDisposable
{
 // IntPtr – unmanaged resource descriptor
 private IntPtr nativeResourceHandle;
 public NativeResourceWrapper()
 {
 //Acquiring unmanaged resource
 nativeResourceHandle = AcquireNativeResource();
 }
 public void Dispose()
 {
 // Releasing unmanaged resource
 ReleaseNativeResource(nativeResourceHandle);
 }
 // Finalizer will be explained later
 ~NativeResourceWrapper() {...}
}

Main Idea of Dispose Pattern

The main idea of Dispose Pattern is:

1. Place all logic of resource release into separate method;

2. Call it from Dispose method;

3. Also call it from finalizer;

4. Add special flag that helps to distinguish who exactly (Dispose
or Finalizer) called the method.

15

1. Interface Implementation

▪Class that has both managed and unmanaged
resources implements IDisposable interface

16

class Boo : IDisposable { ... }

2. Method Dispose(bool disposing)

▪ Class contains method Dispose(bool disposing) that does all job to release resources;

▪ disposing parameter tells if method is called from Dispose method or from Finalize.
This method should be protected virtual for non-sealed classes and private for sealed
classes

17

// For not-sealed classes
protected virtual void Dispose(bool disposing) {}

// For sealed classes
private void Dispose(bool disposing) {}

3. Method Dispose()

▪ Dispose method implementation: first we call Dispose(true), then we may call
GC.SuppressFinalize() method that suppresses finalizer call:

18

public void Dispose()
{
 Dispose(true /*called by user directly*/);
 GC.SuppressFinalize(this);
}

Notes to GC.SupressFinalize() Call
▪ GC.SuppressFinalize() should be called after Dispose(true) but not before

because if method Dispose(true) fails with exception the execution of finalizer
should not be cancelled and it will give another chance to free resources

▪ GC.SuppressFinalize() should be called for classes that do not have finalizers
because finalizers may be created for child classes. The only exception is sealed
classes.

19

4. Parameter “disposing”

▪ Method Dispose(bool disposing) has two parts:
1. If this method called from Dispose (disposing parameter is true) we should release both managed and unmanaged

resources;

2. If this method is called from finalizer (that is possible under normal circumstances only during garbage collection process
when disposing parameter is false), we release only unmanaged resources.

20

void Dispose(bool disposing)
{
 if (disposing)
 {
 // Releasing managed resources only
 }

 // Releasing unmanaged resources
}

5. Finalizer

▪ [OPTIONAL] Class may have finalizer and call Dispose(bool disposing) from it
passing false as parameter.

▪ Also we should take into account that finalizer may be called even for partially
constructed classes, if constructor for such class raises an exception. That is why
resource releasing code should handle situation when resources are not allocated yet

21

~Boo()
{
 Dispose(false /*not called by user directly*/);
}

6. Field “disposed”

▪ The good practice is to create special Boolean field disposed which indicates that object’s resources are released.

▪ Disposable objects should allow any number of Dispose() method calls and generate an exception when any public
member of the object is accessed after first call to the method (when dispose flag is set to true).

22

void Dispose(bool disposing)
{
 if (disposed)
 return; // Resources are already released
 // Releasing resources
 disposed = true;
}

public void SomeMethod()
{
 if (disposed)
 throw new ObjectDisposedException();
}

Objects with Critical Finalization

7. Object with Critical Finalization

Class may be inherited from CriticalFinalizerObject:
– Finalizer for such classes compiled with JIT-compiler immediately when the instance is constructed

(apart to default on demand compilation). This allows finalizer to complete successfully even if the
memory is full

– CLR does not guarantee order of finalizer calls that makes impossible to access other objects from
finalizer that contain unmanaged resources. But CLR guarantees that finalizers for usual objects will
be called before childs of CriticalFinalizerObject. This allows from “usual” objects to access field
SafeHandle that is guaranteed to be released later

– Finalizers for such classes will be called even in case of abnormal termination of application domain.

24

// Use with caution
class Foo : CriticalFinalizerObject {}

Simplified Dispose Pattern

Simplifying Dispose Pattern

▪ Most difficulties with Dispose pattern implementation based on
assumption that same class (or class hierarchy) may contain
managed and unmanaged resources at the same time

▪ But Single Responsibility Principle (SRP) suggest us that we do
not mix resources of different kinds

▪ RAII idiom suggests a solution: if you have unmanaged resource,
do not use it directly, wrap it into managed wrapper and work
with it

26

Simplified Dispose Pattern

▪ Used only for managed resources

27

class SomethingWithManagedResources : IDisposable
{
 public void Dispose()
 {
 // No Dispose(true) и and no calls to GC.SuppressFinalize()
 DisposeManagedResources();
 }

 // No parameters, this method releases unmanaged resources only
 protected virtual void DisposeManagedResources() {}
}

Recommended Links

Recommended Links

▪ Dispose pattern http://habrahabr.ru/post/129283/

▪ IDisposable: What Your Mother Never Told You About Resource Deallocation
http://www.codeproject.com/Articles/29534/IDisposable-What-Your-Mother-Never-Told-You-About

▪ Implementing Finalize and Dispose for cleaning unmanaged resources
http://msdn.microsoft.com/ru-ru/library/b1yfkh5e.aspx

▪ Does C# have destructor? http://habrahabr.ru/post/122639/

29

