
The Basics of Object Lifetime.
Disposing objects.

01.09.2014
Approved by V. Bartish

AGENDA

▪The Basics of Object Lifetime

▪Building Finalizable Objects

▪Building Disposable Objects

▪Dispose pattern

The Basics of Object Lifetime

Car refToMyCar = new Car("Zippy", 50);

References to objects on the managed heap

■ Rule Allocate a class instance onto the managed heap using the new keyword
and forget about it.

The Basics of Object Lifetime

The details of allocating objects onto the managed heap

■ Rule If the managed heap does not have sufficient memory to allocate a
requested object, a garbage collection will occur.

c2-=null;
! assigning a reference to null does not force the garbage collector

to remove the object from the heap.

The Role of Application Roots

▪ Root is a storage location containing a
reference to an object on the
managed heap:

 • References to global objects

 • References to any static
objects/static fields

 • References to local objects within
an application’s code base

 • References to object parameters
passed into a method

 • References to objects waiting to be
finalized

 • Any CPU register that references
an object

A clean and compacted heap

Object Generations

▪ Each object on the heap belongs to
one of the following generations:

 • Generation 0: Identifies a newly
allocated object that has never been
marked for collection.

 • Generation 1: Identifies an object
that has survived a garbage collection
(i.e., it was marked for collection but was
not removed due to the fact that the
sufficient heap space was acquired).

 • Generation 2: Identifies an object that
has survived more than one sweep of the
garbage collector.

■ Note Generations 0 and 1 are termed
ephemeral generations.

Building Finalizable Objects

■ Rule The reason to override Finalize() is if your C# class is making
use of unmanaged resources via PInvoke or complex COM
interoperability tasks. The reason is that you are manipulating memory
that the CLR cannot manage.

▪ it is not possible to directly call an
object’s Finalize() method from a
class instance .

▪ the garbage collector will call an
object’s Finalize() method before
removing the object from memory.

// System.Object
public class Object
{
...
protected virtual void Finalize() {}
}

▪ You can’t override the Finalize() method directly in your class, but you may use of a
destructor syntax to achieve the same effect.

▪ Destructor never takes an access modifier (implicitly protected), never takes parameters,
and can’t be overloaded (only one finalizer per class).

Building Finalizable Objects

Building Disposable Objects

■ Structures and class types can both implement IDisposable
(unlike overriding Finalize(), which is reserved for class types),
as the object user (not the garbage collector) invokes the
Dispose() method.

■ When the object user is finished using the object, the object user
manually calls Dispose() before allowing the object reference to
drop out of scope.

■ Rule It is a good idea to call Dispose() on any object you directly create if
the object supports IDisposable. The assumption you should make is that if
the class designer chose to support the Dispose() method, the type has
some cleanup to perform. If you forget, memory will eventually be cleaned
up (so don’tpanic), but it could take longer than necessary.

Building Disposable Objects

• A number of types in the base class libraries that do implement the Idisposable
interface provide a (somewhat confusing) alias to the Dispose() method, in
an attempt to make the disposal-centric method sound more natural for the defining
type.
• The System.IO.FileStream class implements IDisposable (and therefore supports a

Dispose() method), it also defines the following Close() method that is used for the
same purpose:

Building Disposable Objects

using

■ Note If you attempt to “use” an object that does
not implement IDisposable, you will receive a
compiler error.

?

GC.SuppressFinalize() informs
the CLR that it is no longer
necessary to call the destructor
when this object is
garbage-collected

Dispose pattern

▪ The Dispose Pattern is intended to standardize the usage and

implementation of finalizers and the IDisposable interface.

√ DO implement the Basic Dispose Pattern on types containing instances of

disposable types.

√ DO implement the Basic Dispose Pattern and provide a finalizer on types

holding resources that need to be freed explicitly and that do not have

finalizers.

√ CONSIDER implementing the Basic Dispose Pattern on classes that

themselves don’t hold unmanaged resources or disposable objects but are

likely to have subtypes that do.

1) Involves implementing the System.IDisposable interface

2) Declare the Dispose(bool) method that implements all
resource cleanup logic to be shared between
the Dispose method and the optional finalizer.

▪

Dispose pattern

public class DisposableResourceHolder : IDisposable
{
 private SafeHandle resource; // handle to a resource
 public DisposableResourceHolder()
 {
 this.resource = ... // allocates the resource
 }
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
 protected virtual void Dispose(bool disposing){
 if (disposing){
 if (resource!= null) resource.Dispose();
 }
 }
}

Dispose pattern

▪ DO NOT make the parameterless Dispose method virtual.

▪ The Dispose(bool) method is the one that should be overridden by

subclasses.

▪// bad design
public class DisposableResourceHolder : IDisposable
{
 public virtual void Dispose(){ ... }
 protected virtual void Dispose(bool disposing){ ... }
}

// good design
public class DisposableResourceHolder : Idisposable
 {
 public void Dispose(){ ... }
 protected virtual void Dispose(bool disposing){ ... }
}

Dispose pattern

▪ √ DO allow the Dispose(bool) method to be called more than once. The
method might choose to do nothing after the first call.

▪
public class DisposableResourceHolder : IDisposable
{
 bool disposed = false;

 protected virtual void Dispose(bool disposing)
{
 if(disposed) return;
 // cleanup
 ...
 disposed = true;
 }
}

Dispose pattern

▪ √ DO throw an ObjectDisposedException from any member that cannot
be used after the object has been disposed of.

▪ public class DisposableResourceHolder : IDisposable
{
 bool disposed = false;
 SafeHandle resource; // handle to a resource

 public void DoSomething()
{
 if(disposed) throw new ObjectDisposedException(...);
 // now call some native methods using the resource
 ...
 }
 protected virtual void Dispose(bool disposing)
{
 if(disposed) return;
 // cleanup
 ...
 disposed = true;
 }
}

Dispose pattern

▪ √ CONSIDER providing method Close(), in addition to the Dispose(), if
close is standard terminology in the area.

▪

public class Stream : IDisposable
{
 IDisposable.Dispose(){
 Close();
 }
 public void Close()
{
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}

Questions ?

