
Operators, Delegates
and Events

▪ 10.04.2014

Agenda

▪ Introduction to Operators

▪ Operator Overloading

▪ Creating and Using Delegates

▪ Defining and Using Events

2

Operators, Delegates
and Events

March, 2012 SoftServe University

Agenda
▪ Introduction to Operators

▪ Operator Overloading

▪ Creating and Using Delegates

▪ Defining and Using Events

Introduction to Operators

▪ Operators and Methods

▪ Predefined C# Operators

Operators are different from methods. They have special requirements that
enable them to function as expected. C# has a number of predefined
operators that you can use to manipulate the types and classes supplied
with the Microsoft® .NET Framework.

Operators and Methods

▪ Using methods

– Reduces clarity

– Increases risk of errors, both syntactic
and semantic

▪ Using operators

– Makes expressions clear

myIntVar1 = Int.Add(myIntVar2,
 Int.Add(Int.Add(myIntVar3,
 myIntVar4), 33));

myIntVar1 = myIntVar2 + myIntVar3 + myIntVar4 + 33;

Operators and Methods

▪ The purpose of operators is to make expressions clear and easy to understand.

▪ We can use Method for adding two numbers:

myIntVar1 = Int.Add(myIntVar2, myIntVar3);

myIntVar2 = Int.Add(myIntVar2, 1);

▪ We can use Operator+:

myIntVar1 = myIntVar2 + myIntVar3;

myIntVar2 = myIntVar2 + 1;

Predefined C# Operators

Operator Categories
Arithmetic Member access

Logical (Boolean
and bitwise)

Indexing

String concatenation Cast

Increment and decrement Conditional

Shift Delegate concatenation and
removal

Relational Object creation

Assignment Type information

Overflow exception control Indirection and address

Predefined C# Operators

The C# language provides a large set of predefined operators.
 Following is the complete list.

Operator category Operators
▪ Arithmetic +, -, *, /, %
▪ Logical (Boolean and bitwise) &, |, ^, !, ~, &&, ||, true, false
▪ String concatenation +
▪ Increment and decrement ++, --
▪ Shift <<, >>
▪ Relational ==, !=, <, >, <=, >=
▪ Assignment =, +=, -=, *=, /=, %=, &=, |=, <<=, >>=
▪ Member access .
▪ Indexing []

Predefined C# Operators

The C# language provides a large set of predefined operators.
 Following is the complete list.

Operator category Operators
▪ Cast ()
▪ Conditional ?:
▪ Delegate concatenation and removal +, -
▪ Object creation new
▪ Type information is, sizeof, typeof
▪ Overflow exception control checked, unchecked
▪ Indirection and address *, ->, [], &

◆ Operator Overloading
▪ Introduction to Operator Overloading

▪ Overloading Relational Operators

▪ Overloading Logical Operators

▪ Overloading Conversion Operators

▪ Overloading Operators Multiple Times

▪ Quiz: Spot the Bugs

 Operator Overloading

▪ We should only define operators when it makes sense to do so.
Operators should only be overloaded when the class or struct is a piece
of data (like a number), and will be used in that way.

▪ An operator should always be unambiguous in usage; there should be
only one possible interpretation of what it means.

▪ For example, you should not define an increment operator (++) on an
Employee class (emp1++;) because the semantics of such an operation on
an Employe e are not clear.

Syntax for Overloading
Operators

▪ All operators must be public static methods and their names follow a
particular pattern:

operator@

 @ - specifies exactly which operator is being overloaded.

▪ For example, the method for overloading the addition operator is
operator+.

Operator Overloading. Example

public static Time operator+(Time t1, Time t2)
{

int newHours = t1.hours + t2.hours;
int newMinutes = t1.minutes + t2.minutes;
return new Time(newHours, newMinutes);

}

• All arithmetic operators return an instance of the class
and manipulate objects of the class.

Overloading Relational
Operators

▪ Relational operators must be paired
< and >

<= and >=

== and !=

For consistency, create a Compare method first and define all
the relational operators by using Compare.

▪ Override the Equals method if overloading ==
and !=

▪ Override the GetHashCode method if overriding
Equals method

Overloading Relational
Operators

▪ The following code shows how to implement the relational operators, the Equals
method, and the GetHashCodemethod for the Time struct:

public struct Time
{ // Equality

public static bool operator==(Time lhs, Time rhs)
 { return lhs.Compare(rhs) == 0;}
public static bool operator!=(Time lhs, Time rhs)
 { return lhs.Compare(rhs) != 0;}

// Relational
public static bool operator<(Time lhs, Time rhs)
 { return lhs.Compare(rhs) < 0;}
public static bool operator>(Time lhs, Time rhs)
 { return lhs.Compare(rhs) > 0;}
public static bool operator<=(Time lhs, Time rhs)
 { return lhs.Compare(rhs) <= 0;}
public static bool operator>=(Time lhs, Time rhs)
 { return lhs.Compare(rhs) >= 0;}

Overloading Relational
Operators

▪ The following code shows how to implement the relational operators, the Equals
method, and the GetHashCodemethod for the Time struct:

/ / Inherited virtual methods (from Object)
public override bool Equals(object obj)
{
 return (obj is Time) && Compare((Time)obj) == 0;

 }
public override int GetHashCode()
{
return TotalMinutes() ;

 }
private int Compare(Time other)
{
int lhs = TotalMinutes();

 int rhs = other.TotalMinutes();
 int result;
 if (lhs < rhs)
 result = -1;
 else if (lhs > rhs)
 result = +1;

 else
 result = 0;

 return result;

 } . . .
}

Overloading Logical Operators
▪ Operators && and || cannot be overloaded

directly

– They are evaluated in terms of &, |, true, and
false, which can be overloaded

– x && y is evaluated as T.false(x) ? x : T.&(x, y)

– x || y is evaluated as T.true(x) ? x : T.|(x, y)

Overloading Conversion
Operators

▪ Overloaded conversion operators

▪ You can define implicit and explicit conversion
operators for your own classes and create
programmer-defined cast operators that can
be used to convert data from one type to
another.

public static explicit operator Time (float hours)
{ ... }
public static explicit operator float (Time t1)
{ ... }
public static implicit operator string (Time t1)
{ ... }

Overloading Conversion
Operators

 explicit operator Time (int minutes)
▪ It is explicit operator because not all int can be converted; a

negative argument results in an exception being thrown.

explicit operator Time (float minutes)
▪ It is explicit operator because a negative parameter causes

an exception to be thrown.

implicit operator int (Time t1)
▪ It is implicit operator because all Time values can safely be

converted to int.

Overloading Conversion
Operators

implicit operator string
(Time t1)

▪ This operator converts a Time into a
string. This is also implicit because there
is no danger of losing any information in
the conversion.

▪ If a class defines a string conversion
operator - the class should override
ToString

Overloading Conversion
Operators

public struct Time { ...
public static explicit operator Time (int minutes) //

Conversion operators
{ return new Time(0, minutes); }

public static explicit operator Time (float minutes)
{ return new Time(0, (int)minutes); }

public static implicit operator int (Time t1)
{ return t1.TotalMinutes(); }

public static explicit operator float (Time t1)
{ return t1.TotalMinutes(); }

public static implicit operator string (Time t1)
{ return t1.ToString(); }

public override string ToString() // Inherited virtual
methods (from Object)

{ return String.Format("{0}:{1:00}", hours, minutes); }
... }

The following code shows how to implement the conversion operators and
ToString method.

Overloading Operators Multiple
Times

▪ The same operator can be overloaded multiple times to provide alternative
implementations that take different types as parameters. At compile time, the
system establishes the method to be called depending upon the types of the
parameters being used to invoke the operator.

public static Time operator+(Time t1, int hours)
{...}

public static Time operator+(Time t1, float hours)
{...}

public static Time operator-(Time t1, int hours)
{...}

public static Time operator-(Time t1, float hours)
{...}

Quiz: Spot the Bugs

public bool operator != (Time t1, Time t2)
{ ... } 1

public static operator float(Time t1) { ... } 2

public static Time operator += (Time t1, Time t2)
{ ... }

public static bool Equals(Object obj) { ... }

3

4

public static int operator implicit(Time t1)
{ ...} 5

Quiz: Spot the Bugs. Answers

Operators must be static. The definition for the != operator should be:

public static bool operator != (Time t1, Time t2) { ... }

The “type” is missing. Conversion operators must be implicit or explicit.

public static implicit operator float (Time t1) { ... }

You cannot overload the += operator. However, += is evaluated by using

the + operator, which you can overload.

The Equals method should be an instance method rather than a class

method. However, if you remove the static keyword, this method will hide

the virtual method inherited from Object and not be invoked as expected, so

the code should use override instead, as follows:

public override bool Equals(Object obj) { ... }

The int and implicit keywords have been transposed. The name of the

operator should be int, and its type should be implicit, as follows:

public static implicit operator int(Time t1) { ... }

1

2

3

4

5

2. Windowing system
▪ Modern graphical environments use event model for communicating

between interactive objects and the input/output system. The event model
was developed to support direct manipulation interfaces.

▪ In a windowing system a user interface of an application is built of
– top level windows, and

– controls (ui components, child windows, widgets, ...).

▪ User actions with the input devices are translated into software events
(messages) and distributed to the appropriate window. Events (or
messages) are identified by an event type.

Process of WA execution

Analyzing the Problem. WinAPI
How create a simple WIN32 window

#include <windows.h>

LONG WINAPI WndProc(HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine,

 int nCmdShow)

{ HWND hMainWnd, hWndButton;

 MSG msg;

 WNDCLASS w;

 memset(&w,0,sizeof(WNDCLASS));

 w.style = CS_HREDRAW | CS_VREDRAW;

 w.lpfnWndProc = WndProc;

 w.hInstance = hInstance;

 w.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

 w.lpszClassName = "My Class";

 RegisterClass(&w);

Analyzing the Problem. WinAPI
 hMainWnd = CreateWindow("My Class", "My title",

WS_OVERLAPPEDWINDOW,
 300, 200, 200, 180, NULL, NULL, hInstance, NULL);
 ShowWindow(hwnd,nCmdShow);
 UpdateWindow(hwnd);
 while(GetMessage(&msg,NULL,0,0))
 { TranslateMessage(&msg);
 DispatchMessage(&msg); }
 return msg.wParam;
 }
LONG WINAPI WndProc(HWND hwnd, UINT Message,
 WPARAM wParam,

LPARAM lparam)
{ switch (Message)
 { case WM_DESTROY: PostQuitMessage(0);
 break;
 default: return DefWindowProc(hwnd, Message,

wparam, lparam);
 }
 return 0;
}

hWndButton =
CreateWindow("BUTTON","Copy",
BS_PUSHBUTTON | WS_CHILD |
WS_VISIBLE,10,10,90,20, hMainWnd,
(HMENU)ID_BUTTON,
(HINSTANCE)hInstance, NULL);

case WM_PAINT: …
case WM_CLOSE: …
case WM_DESTROY: …
case WM_COMMAND: // Command from Child
windows
switch(wParam) // The ID is
wParam
{ case ID_BUTTON: … }

Delegates and event handlers in
.NET

▪ A dlegate allows a method to be called
indirectly

– A delegate is a special kind of class that
holds a reference to a method with a
pre-defined signature.

– All methods invoked by the same delegate
must have the same parameters and return
value

Metho
dX

delega
te

?

Method1()
{
...
}

Method2()
{
...
}

DoWork()
{
...
MethodX();
...
}

class Student
{
 string name;
 double gpa;
 int units;

 public void ChangeGpa(int grade)
 {
 gpa = (gpa * units + grade) / (units + 1);
 units++;
 }
 ...
}

store state

change state

StudentChangeGpa
Parent

Registrar

new grade causes
gpa to change

notify

Using Delegates. Example.

callback

register
Parent
(target)

Student
(caller)

callback

target
object

callback target
method

caller

delegate

.NET Framework uses delegates for callback supporting :

Using Delegates. Example.

delegate void StudentCallback(double
gpa);

delegate keyword

target method
return type

name of delegate

target method
parameter

class Parent
{
 public void Report(double gpa)
 { ...
 }
}

class Registrar
{
 public static void Log(double gpa)
 { ...
 }
}

Using Delegates. Example.

target methods

delegate void StudentCallback(double gpa);

class Parent
{
 public void Report(double gpa) { ... }
}

class Student
{
 public StudentCallback GpaChanged;

 public void ChangeGpa(int grade)
 {
 // update gpa
 ...
 GpaChanged(gpa);
 }
}

Student ann = new Student("Ann");
Parent mom = new Parent();

ann.GpaChanged = new StudentCallback(mom.Report);
ann. ChangeGpa(4);

define delegate

caller stores delegate

caller invokes delegate

target method

create and install delegate

Using Delegates. Example.

Using Delegates. Example.
▪ Null reference

class Student
{
 public StudentCallback
GpaChanged;

 public void ChangeGpa(int grade)
 {
 // update gpa
 ...
 if (GpaChanged != null)
 GpaChanged(gpa);
 }

test before call

class Registrar
{
 public static void Log(double gpa)
 {
 ...
 }
}

void Run()
{
 Student ann = new Student("Ann");

 ann.GpaChanged = new StudentCallback(Registrar.Log);
 ...
}

Static methods

static method

register

Using Delegates. Example.

▪ Multiple delegates

▪ Overloading operator+= and operator+

Parent mom = new Parent();
Parent dad = new Parent();

Student ann = new Student("Ann");

ann.GpaChanged += new
StudentCallback(mom.Report);
ann.GpaChanged += new
StudentCallback(dad.Report);
...

targets

first
second

Using Delegates. Example. Using Delegates. Example.

Parent mom = new Parent();
Parent dad = new Parent();

Student ann = new Student("Ann");

ann.GpaChanged += new
StudentCallback(mom.Report);
ann.GpaChanged += new
StudentCallback(dad.Report);
...
ann.GpaChanged -= new
StudentCallback(dad.Report);
...

remove

add

• Removing delegate
• Overloading operator-= and operator-

Using Delegates. Example. Using Delegates. Example.

Defining and Using Events
▪ How Events Work

▪ Defining Events

▪ Passing Event Parameters

▪ Demonstration: Handling Events

Pattern Observer

How Events Work
▪ Publisher (Student)

– Raises an event to alert all interested objects
(subscribers)

▪ Subscriber (Parents, Registrar)

– Provides a method to be called when the event
is raised

Defining Events

▪ Defining an event

▪ Subscribing to an event

▪ Notifying subscribers to an event

public delegate void ChangedEventHandler (object sender, EventArgs e);
private event ChangedEventHandler Changed;

List.Changed += new ChangedEventHandler(ListChanged);

protected virtual void OnChanged(EventArgs e)
{

if (Changed != null)
Changed(this, e);

}

Passing Event Parameters

▪ Parameters for events should be passed as
EventArgs
– Define a class descended from EventArgs to act as

a container for event parameters
▪ The same subscribing method may be called by

several events
– Always pass the event publisher (sender) as the first

parameter to the method

.NET Delegates

[SerializableAttribute]
[ComVisibleAttribute(true)]
public delegate void EventHandler (Object sender,

EventArgs e)

[SerializableAttribute]
public delegate
void EventHandler<TEventArgs> (Object sender,

TEventArgs e)
 where TEventArgs : EventArgs

[Serializable]
public class EventArgs {
 public static readonly EventArgs Empty = new EventArgs();
 public EventArgs() { }
}

▪ I am pretty sure you all must have seen these
delegates when writing code. IntelliSense shows
methods that accept Actions, Func<TResult> and
some accept Predicate<T>. So what are these? Let’s
find out.

Let’s go by a simple example. I have following
“Employee” class and it has a helper method which
will return me a list of Employees.

public class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime Birthday { get; set; }
 public int Age { get; set; }

 public static List<Employee> GetEmployeees()
 {
 return new List<Employee>()
 {
 new Employee()
 {
 FirstName = "Jaliya",
 LastName = "Udagedara",
 Birthday = Convert.ToDateTime("1986-09-11")
 },
 new Employee()
 {
 FirstName = "Gary",
 LastName = "Smith",
 Birthday = Convert.ToDateTime("1988-03-20")
 }
 };
 }
}

In my Main method I am getting the list of type employees into a variable

List<Employee> employees = Employee.GetEmployeees();

Action

▪ Action series of delegates are pointers to methods which take zero, one or more input
parameters, and do not return anything.

▪ Let’s consider List<T>.ForEach method, which accepts a Action of type T. For my list of type
Employee, it accepts an Action of type Employee.

Action

▪ So let’s create an Action now. I have the following method which will calculate the age of the
employee when the employee is passed in.

▪ static void CalculateAge(Employee emp) { emp.Age = DateTime.Now.Year - emp.Birthday.Year;
}

▪ So I can create an Action, pointing to above method.

▪ Action<Employee> empAction = new Action<Employee>(CalculateAge);
employees.ForEach(empAction);

▪ foreach (Employee e in employees) { Console.WriteLine(e.Age); }

▪ This will print me the calculated age for each employee. With the use of Lambda Expressions,
I can eliminate writing a separate method for calculating the age and put it straight this way.

▪ employees.ForEach(e => e.Age = DateTime.Now.Year - e.Birthday.Year);

Func<TResult>
▪ Func<TResult> series of delegates are pointers to methods which take zero, one or more input

parameters, and return a value of the type specified by the TResult parameter.

▪ For this, let’s consider Enumerable.First<TSource> method, which has an overloading method which
accepts a Func.

▪ In my scenario, this particular method accepts Func which accepts an Employee and returns a bool
value. For this, let’s create a method which I am going to point my Func to. Following method accepts
an employee and checks whether his/her FirstName is equal to “Jaliya” and returns true or false.

▪ static bool NameIsEqual(Employee emp)

▪ { return emp.FirstName == "Jaliya"; }

▪ Now I can create aFunc<Employee, bool> myFunc = new Func<Employee, bool>(NameIsEqual);
Console.WriteLine(employees.First(myFunc).FirstName);

▪ Again with the use of Lambda Expressions, I can make my code simple.

▪ Console.WriteLine(employees.First(e => e.FirstName == "Jaliya").FirstName);

▪ Func and get the first employee which satisfies the condition on Func.

Predicate<T>
Predicate<T> represents a method that defines a set of criteria and determines whether the
specified object meets those criteria.

For this, let’s consider List<T>.Find Method which accepts a Predicate.

▪ In here it’s a Predicate of type Employee. So let’s create a method which accepts a Employee
and check whether he/she is born in “1986”. If yes, it will return true or else false.

▪ static bool BornInNinteenEightySix(Employee emp)

▪ { return emp.Birthday.Year == 1986; }

▪ Now I am creating a Predicate pointing to above method.

▪ Predicate<Employee> predicate = new Predicate<Employee>(BornInNinteenEightySix);

▪ Console.WriteLine(employees.Find(predicate).FirstName);

▪ Again with the use of Lambda Expressions, I can simplify the code.
Console.WriteLine(employees.Find(e => e.Birthday.Year == 1986).FirstName);

Func Vs. Predicate<T>
▪ Now you must be wondering what is the difference between Func and Predicate.

Basically those are the same, but there is a one significant difference.

▪

▪ Predicate can only be used point to methods which will return bool. If the pointing
method returning something other than a bool value, you can’t use predict. For that,
you can use Func. Let’s take a look at following method.

▪ static string MyMethod(int i)

▪ { return "You entered: " + i; }

▪ The method accepts a integer value and returns a string. I can create the following
Func and use it to call the above method.

▪ Func<int, string> myFunc = new Func<int, string>(MyMethod);
Console.WriteLine(myFunc(3));

▪ This will compile and print the desired output. But if you try to create a Predicate for
this, you can’t.

Questions?

