Page 93, #6

Indices

- i = input elements {s,n}
- f = fertilizers {1,2}

• Data

- REQ_{if} = lower limit of proportion of f made up of i
- COST_i = cost/lb of input i
- PRICE_f = price/lb of fertilizer f
- AVAIL = lbs available of fertilizer i
- NET_{if} = PRICE_f COST_i = net profit/lb for each combination

• Variables

- x_{if} = lbs of i used to make f
- Objective

$$\max z = NET_{s,1} * x_{s,1} + NET_{s,2} * x_{s,2} + NET_{n,1} * x_{n,1} + NET_{n,2} * x_{n,2}$$

• Constraints

 $x_{s,1} \ge REQ_{s,1} * (x_{s,1} + x_{n,1})$ $x_{n,1} \ge REQ_{n,1} * (x_{s,1} + x_{n,1})$ $x_{s,2} \ge REQ_{s,2} * (x_{s,2} + x_{n,2})$ $x_{n,2} \ge REQ_{n,2} * (x_{s,2} + x_{n,2})$ $x_{s,1} + x_{s,2} \le AVAIL_{s}$ $x_{n,1} + x_{n,2} \le AVAIL_{n}$ $x_{if} \ge 0 \text{ for all } i, f$

$$\max z = \sum_{i,f} NET_{if} * x_{if}$$
(Algebraic)
$$x_{if} \ge REQ_{if} * \sum_{i'} x_{i'f} \text{ for all } i,f$$

$$\sum_{f} x_{if} \le AVAIL_{i} \text{ for all } i$$

$$x_{if} \ge 0 \text{ for all } i,f$$

IESM320 HW 4

Page 93, #10

Indices

- m = mines {1-3}
- c = customers {1-4}
- e = elements {ash, sulfur}

• Data

- PROD_m = production cost/ton (\$) of coal from mine m
- CAP_m = production capacity of mine m
- $\mathsf{PROP}_{\mathsf{em}}$ = proportion of e per ton in mine m coal
- LIM_e = maximum proportion of e in all coal shipped
- COST_{mc} = cost/ton (\$) to ship from m to c
- DEMAND_c = tons demanded by customer c
- TOT_{mc} = PROD_m + COST_{mc} = total production plus shipping cost

• Variables

- x_{mc} = tons of coal shipped from m to c
- Objective

$$\min z = TOT_{1,1} * x_{1,1} + TOT_{1,2} * x_{1,2} + TOT_{1,3} * x_{1,3} + TOT_{1,4} * x_{1,4} +$$

$$\boxtimes$$

$$TOT_{3,1} * x_{3,1} + TOT_{3,2} * x_{3,2} + TOT_{3,3} * x_{3,3} + TOT_{3,4} * x_{3,4}$$
(12 terms)

Constraints

$$\sum_{c} x_{mc} \leq CAP_{m} \text{ for all } m$$

$$\sum_{m} x_{mc} \geq DEMAND_{c} \text{ for all } c$$

$$\sum_{mc} PROP_{em} * x_{mc} \leq LIM_{e} * \sum_{mc} x_{mc} \text{ for all } e$$

$$x_{mc} \geq 0 \text{ for all } m, c$$

$$\min z = \sum_{mc} TOT_{mc} * x_{mc}$$

IESM320 HW 4 p. 2

Page 104, #3

Indices

- m = months {1-3}
- c = cake type {bf, ch}

• Data

- DEMAND_{cm} = demand for cake c in month m
- COST_{cm} = cost for cake c in month m
- HOLD = holding cost/month for cake c
- CAP = max cakes baked/month

• Variables

- x_{cm} = # of cakes c baked in month m
- in_{cm} = inventory of c at the end of month m
- Objective

$$\min z = \left(\sum_{cm} COST_{cm} * x_{cm} \right) + \left(\sum_{cm} HOLD_{c} * in_{cm} \right)$$

= $COST_{bt,1} * x_{bt,1} + COST_{bt,2} * x_{bt,2} + COST_{bt,3} * x_{bt,3} + COST_{ch,1} * x_{ch,1} + COST_{ch,2} * x_{ch,2} + COST_{ch,3} * x_{ch,3} + HOLD_{bt} * (in_{bt,1} + in_{bt,2} + in_{bt,3}) + HOLD_{ch} * (in_{ch,1} + in_{ch,2} + in_{ch,3})$

• Constraints

 $\begin{aligned} x_{bt,1} + x_{ch,1} &\leq CAP \\ x_{bt,2} + x_{ch,2} &\leq CAP \\ x_{bt,3} + x_{ch,3} &\leq CAP \\ x_{bt,1} &= DEMAND_{bt,1} + in_{bt,1} \\ x_{ch,1} &= DEMAND_{ch,1} + in_{ch,1} \\ x_{bt,2} + in_{bt,1} &= DEMAND_{bt,2} + in_{bt,2} \\ x_{ch,2} + in_{ch,1} &= DEMAND_{ch,1} + in_{ch,2} \\ x_{bt,3} + in_{bt,2} &= DEMAND_{bt,3} + in_{bt,3} \\ x_{ch,3} + in_{ch,2} &= DEMAND_{ch,3} + in_{ch,3} \\ x_{cm} &\geq 0, in_{cm} \geq 0 \text{ for all } c, m \end{aligned}$

$$\sum_{c} x_{cm} \leq CAP \text{ for all } m$$

$$x_{cm} = DEMAND_{cm} + in_{cm} \text{ for all } c, m = 1$$

$$x_{cm} + in_{c,m-1} = DEMAND_{cm} + in_{cm} \text{ for all } c, m > 1$$

$$x_{cm} \geq 0, in_{cm} \geq 0 \text{ for all } c, m$$

(Algebraic)

IESM320 HW 4 p. 3

Page 104, #4

Indices

- p = products {A,B}
- a = assembly lines {1,2}
- m = month {mar,apr}

• Data

- DEMAND_{pm} = demand for p in m
- HOURS = line hours of a available in m
- PRODRATE_{pa} = units of p produced/hour on a
- PRODCOST = \$/hour to run a line
- CARRY = carrying cost (\$)/unit/month
- INIT_p = initial inventory of p
- END_{p} = ending inventory of p

• Variables

- x_{pam} = number of p produced on a in m
- in pm = ending inventory of p in month m
- Objective

$$\min z = \left(PRODCOST * \sum_{pam} \frac{x_{pam}}{PRODRATE_{pa}} \right) + \left(HOLD * \sum_{pm} in_{pm} \right)$$

Constraints

$$\sum_{p} \frac{x_{pam}}{PRODRATE_{pa}} \leq HOURS_{am} \text{ for all } a, m$$

$$INIT_{p} + \sum_{a} x_{pam} = DEMAND_{pm} + in_{pm} \text{ for all } p, m = "mar"$$

$$\sum_{a} x_{pam} + in_{p,m-1} = DEMAND_{pm} + END_{p} \text{ for all } p, m = "apr"$$

$$x_{pam} \geq 0 \text{ for all } p, a, m$$

$$in_{pm} \geq 0 \text{ for all } p, m$$

Note: problem defines PRODRATE as hours/product, which is strange. I divide here because a rate is normally products/hour; if you use the data as given, you'd multiply