Page 93, \#6

- Indices
- $\mathrm{i}=$ input elements $\{\mathrm{s}, \mathrm{n}\}$
- $f=$ fertilizers $\{1,2\}$
- Data
- $R E Q_{i f}=$ lower limit of proportion of f made up of i
- $\mathrm{COST}_{\mathrm{i}}=$ cost/lb of input i
- PRICE $_{f}=$ price/lb of fertilizer f
- AVAIL $_{i}=\operatorname{lbs}$ available of fertilizer i
- $\mathrm{NET}_{\text {if }}=\mathrm{PRICE}_{\mathrm{f}}-\mathrm{COST}_{\mathrm{i}}=$ net profit/lb for each combination
- Variables
- $x_{\text {if }}=$ lbs of i used to make f
- Objective

$$
\max z=N E T_{s, 1} * x_{s, 1}+N E T_{s, 2} * x_{s, 2}+N E T_{n, 1} * x_{n, 1}+N E T_{n, 2} * x_{n, 2}
$$

- Constraints

$$
\text { ls } \begin{aligned}
x_{s, 1} & \geq R E Q_{s, 1} *\left(x_{s, 1}+x_{n, 1}\right) \\
x_{n, 1} & \geq R E Q_{n, 1} *\left(x_{s, 1}+x_{n, 1}\right) \\
x_{s, 2} & \geq R E Q_{s, 2} *\left(x_{s, 2}+x_{n, 2}\right) \\
x_{n, 2} & \geq R E Q_{n, 2} *\left(x_{s, 2}+x_{n, 2}\right) \\
x_{s, 1}+x_{s, 2} & \leq \text { AVAIL }_{s} \\
x_{n, 1}+x_{n, 2} & \leq \text { VVAIL }_{n} \\
x_{i f} & \geq 0 \text { for all } i, f
\end{aligned}
$$

$\max z=\sum_{i, f} N E T_{i f} * x_{i f}$
(Algebraic)
$x_{i f} \geq R E Q_{i f} * \sum_{i^{\prime}} x_{i^{\prime} f}$ for all i, f
$\sum_{f} x_{i f} \leq$ AVAIL $_{i}$ for all i
$x_{i f} \geq 0$ for all i, f

Page 93, \#10

- Indices
- $\mathrm{m}=$ mines $\{1-3\}$
- $\mathrm{c}=$ customers $\{1-4\}$
- e = elements \{ash, sulfur\}
- Data
- $\mathrm{PROD}_{\mathrm{m}}=$ production cost/ton (\$) of coal from mine m
- $\mathrm{CAP}_{\mathrm{m}}=$ production capacity of mine m
- $\mathrm{PROP}_{\mathrm{em}}=$ proportion of e per ton in mine m coal
- LIM $_{e}=$ maximum proportion of e in all coal shipped
- COST $_{\mathrm{mc}}=$ cost/ton (\$) to ship from m to c
- DEMAND ${ }_{c}$ tons demanded by customer c
- $\mathrm{TOT}_{\mathrm{mc}}=\mathrm{PROD}_{\mathrm{m}}+$ COST $_{\mathrm{mc}}=$ total production plus shipping cost

- Variables

- $\mathrm{x}_{\mathrm{mc}}=$ tons of coal shipped from m to c
- Objective

$$
\begin{gathered}
\min z=T O T_{1,1} * x_{1,1}+T O T_{1,2} * x_{1,2}+\operatorname{TOT}_{1,3} * x_{1,3}+T O T_{1,4} * x_{1,4}+ \\
\text { 区 } \\
\operatorname{TOT}_{3,1} * x_{3,1}+\operatorname{TOT}_{3,2} * x_{3,2}+\operatorname{TOT}_{3,3} * x_{3,3}+T O T_{3,4} * x_{3,4}(12 \text { terms })
\end{gathered}
$$

$$
\min z=\sum_{m c} T O T_{m c} * x_{m c}
$$

Page 104, \#3

- Indices
- $m=$ months $\{1-3\}$
- c = cake type $\{b f, c h\}$
- Data
- DEMAND ${ }_{c m}=$ demand for cake c in month m
- $\operatorname{COST}_{\mathrm{cm}}=$ cost for cake c in month m
- $\mathrm{HOLD}_{\mathrm{c}}=$ holding cost/month for cake c
- CAP = max cakes baked $/$ month
- Variables
- $x_{c m}=\#$ of cakes c baked in month m
- in $\mathrm{cm}_{\mathrm{cm}}$ = inventory of c at the end of month m
- Objective

$$
\begin{aligned}
\min z= & \left(\sum_{c m} \operatorname{COST} T_{c m} * x_{c m}\right)+\left(\sum_{c m} H O L D_{c} * i n_{c m}\right) \\
= & \operatorname{COST}_{b t, 1} * x_{b t, 1}+\operatorname{COST}_{b t, 2} * x_{b t, 2}+\operatorname{COST}_{b t, 3} * x_{b t, 3}+ \\
& \operatorname{COST}_{c h, 1} * x_{c h, 1}+\operatorname{COST}_{c h, 2} * x_{c h, 2}+\operatorname{COST}_{c h, 3} * x_{c h, 3}+ \\
& H O L D_{b t} *\left(n_{b t, 1}+i n_{b t, 2}+i n_{b t, 3}+\right. \\
& H O L D_{c h} *\left(i n_{c h, 1}+i n_{c h, 2}+i n_{c h, 3}\right)
\end{aligned}
$$

- Constraints

$$
\begin{aligned}
& x_{b t, 1}+x_{c h, 1} \leq C A P \\
& x_{b t, 2}+x_{c h, 2} \leq C A P \\
& x_{b t, 3}+x_{c h, 3} \leq C A P \\
& x_{b t, 1}=D E M A N D_{b t, 1}+i n_{b t, 1} \\
& x_{c h, 1}=D E M A N D_{c h, 1}+i n_{c h, 1} \\
& x_{b t, 2}+i n_{b t, 1}=D E M A N D_{b t, 2}+i n_{b t, 2} \\
& x_{c h, 2}+i n_{c h, 1}=\text { DEMAND } D_{c h, 1}+i n_{c h, 2} \\
& x_{b t, 3}+i n_{b t, 2}=D E M A N D_{b t, 3}+i n_{b t, 3} \\
& x_{c h, 3}+i n_{c h, 2}=\text { DEMAND }_{c h, 3}+i n_{c h, 3} \\
& x_{c m} \geq 0, i n_{c m} \geq 0 \text { for all } c, m
\end{aligned}
$$

Page 104, \#4

- Indices
- $p=$ products $\{A, B\}$
- $a=$ assembly lines $\{1,2\}$
- m = month \{mar,apr\}
- Data
- DEMAND ${ }_{p m}=$ demand for p in m
- HOURS $_{\mathrm{am}}=$ line hours of a available in m
- PRODRATE $\mathrm{p}_{\mathrm{pa}}=$ units of p produced/hour on a
- $\operatorname{PRODCOST}=\$ /$ hour to run a line
- CARRY = carrying cost (\$)/unit/month
- INIT $_{p}=$ initial inventory of p
- $E N D_{p}=$ ending inventory of p
- Variables
- $x_{p a m}=$ number of p produced on a in m
- $\mathrm{in}_{\mathrm{pm}}=$ ending inventory of p in month m
- Objective

$$
\begin{aligned}
& \min z=\left(\text { PRODCOST } * \sum_{p a m} \frac{x_{p a m}}{P_{R O D R A T E}^{p a}}\right. \\
&\left(H O L D * \sum_{p m} i_{p m}\right)+ \\
&
\end{aligned}
$$

- Constraints

$\sum_{p} \frac{x_{p a m}}{P R O D R A T E} \leq \operatorname{HOURS}_{a m}$ for all a, m $I N I T_{p}+\sum_{a} x_{p a m}=D E M A N D_{p m}+i n_{p m}$ for all $p, m={ }^{\prime \prime}$ mar $^{\prime \prime}$
$\sum_{a} x_{p a m}+i n_{p, m-1}=D E M A N D_{p m}+E N D_{p}$ for all $p, m=" a p r "$
$x_{p a m} \geq 0$ for all p, a, m
$i n_{p m} \geq 0$ for all p, m

Note: problem defines
PRODRATE as hours/product, which is strange. I divide here because a rate is normally products/hour; if you use the data as given, you'd multiply

