
GIT Basics

Kostiantyn Vorflik
Junior Software Engineer

OCTOBER 19, 2016

Agenda

What it VCS and why it is useful to use it?1

Distributed VS Centralized VSC. Prof and cons.2

Installing GIT3

Gitlab4

Git under the bonnet5

Git basics6

ABOUT GIT

PART I

What it VCS and why it is useful to use it?

Advantages of using VCS

Collaboration1

Storing Versions (Branching)2

Restoring Previous Versions3

Understanding What Happened4

Backup5

Distributed VS Centralized VSC

Distributed VS Centralized VSC

• Most of operations are local.

• Repository data and history available on each local copy, so you could do a lot of

operation without internet connection.

• If central copy of data will be lost, any local copy could be used to restore central.

• Lightweight branching.

• Possibility of working with several remotes in one time.

• Storing only current copy of data in a local repository could be an advantage.

• Easier workflow for novice users.

Advantages of distributed
VCS

Advantages of centralized VCS

Distributed VS Centralized VSC

Distributed VCS stores patches

Centralized VCS stores stream of snapshots

Installing GIT

• Via binary installer:

$ sudo yum install git-all

• If you’re on a Debian-based distribution like Ubuntu, try:

$ sudo apt-get install git-all

• Just go to the next link and the download will start automatically.

 http://git-scm.com/download/win

• To find more ways to download and install git visit:

 https://git-scm.com/downloads

Linux

Windows

Other

GIT configuration & help

 Saves configuration for current repository

--system (Saves configuration for all system users)

--global (Saves configuration for current system user)

• git config --global user.name “Ivan Ivanov" (To set user name)

• git config --global user.email ivan_ivanov@epam.com (To set user email)

• Setup Notepad++ as core editor

git config --global core.editor "'C:/Program Files (x86)/Notepad++/notepad++.exe' -multiInst

-notabbar -nosession -noPlugin"

• git config --list (To get current configuration)

• git help <verb>

• git <verb> --help

• man git-<verb>

git config

git help

GIT configuration & help

 Saves configuration for current repository

--system (Saves configuration for all system users)

--global (Saves configuration for current system user)

• git config --global user.name “Ivan Ivanov" (To set user name)

• git config --global user.email ivan_ivanov@epam.com (To set user email)

• Setup Notepad++ as core editor

git config --global core.editor "'C:/Program Files (x86)/Notepad++/notepad++.exe' -multiInst

-notabbar -nosession -noPlugin"

• git config --list (To get current configuration)

• git help <verb>

• git <verb> --help

• man git-<verb>

git config

git help

Gitlab – internal EPAM repository

Generate new ssh key

Set your email and username in you Git client.1

Generate a new SSH private/public key-set.2

Add your public key to Gitlab3

Integrate new ssh key with Gitlab

ssh-key sample
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCrLMjgTwIO/uFRom47o2oMWYiFxIRa+nrsjQ2n9W4Tft9hW0wDGXa
9AYN/MAWEMD6FzGxLvkHy9vwHChQbKPXAwwTGAmpp7RenJ8ukGczVEY00K8nlfZ6qS5unxcFtR4/C2NJGvx
OCYYJEac+1Lpxwk02ZXX4TwARKHgl+oNlE6KoAHG6tDBYdvxH981alxp+aqyhZs5RNRTECRJujwjNcjTwFayn
G5LlfRwUjI+UtWvD70fQj4u/TE7Rfi+sNyBblJTnJYjkzgppseF5vttQsBvLWISthmUDizfKh1FXJ+g7AjS3tLztBX1
8Qw3tLkck+1iz/Er5HbclsboBIH9tB Kostiantyn_Vorflik@ko-PC

GIT BASICS

PART II

.gitignore

This is a file, which you could create in the root of your repository. All files, which
are match patterns from gitignore, would be untracked by default. This could be binary
files; files, which are generated by IDE, logs, ect. So all of this files exist in you project
directory, but you will never want to commit them to repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can start patterns with a forward slash (/) to avoid recursivity.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

no .a files
*.a
but do track lib.a, even though you're ignoring .a files above
!lib.a
ignore all files in the build/ directory
build/
ignore all .pdf files in the doc/ directory
doc/**/*.pdf

The three states. The basic GIT workflow

• Modified: you have changed the file but have not committed it to your local database

• Staged: you have marked a modified file in its current version to go into your next

commit snapshot.

• Committed: the data is safely stored in your local database.

This leads us to the three main sections of a GIT project:

Creating GIT repository

git init

This command is used for putting existing project under version control. Command

should be executed in the root project directory. Pay attention! After invoking this

command you files will be untracked. You should track them and do initial commit

manually.

git clone [url]

This command is used to clone remote repository and create local copy for you.

After cloning repository all files are in unmodified state.

For cloning repository you could use different transfer protocols. For example:

https, ssh.

Initialization

Clone

File state lifecycle. GIT status

git status

This command is used to find out in which states you repository files are.

Status

Lifecycle

GIT add

git add [file]

Command git add is used for the different proposes. Two of them are:

On branch master

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 README

nothing added to commit but untracked files present (use "git add" to track)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

• Prepare modified files for commit. [modified -> staged]

• Put untracked file under VCS, prepare them for commit. [untracked -> staged]

GIT add

After using

git add *

or

git add README

git add CONTRIBUTING.md

we will get the next result:

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

GIT add

What will happened if we do some changes in README file?

vim CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

Git stages a file exactly as it is when you run the git add command.

Committing changes

The command

git commit

allows you to fix your staged changes.

$ git commit -m "Story 2: Extending readme files"
[master 463dc4f] Story 2: Extending readme files
 2 files changed, 2 insertions(+)
 create mode 100644 README

You could also use

git commit –a

to skip staging area.

Deleting & moving files

Deleting

git rm [file] allows you to stage files, which should be deleted.

$ rm PROJECTS.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working
directory)

 deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

rm 'PROJECTS.md'
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: PROJECTS.md

Deleting & moving files

Moving and renaming files

git mv [source][dest] .

$ git mv README.md README
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Reviewing commit history

git log
The command for reviewing commit history. By default shows SHA-1, commit name, author, email,
date.

Some of the most popular options:

Option Description

-p Shows the difference between commits

-2 Limits number of commits

--pretty[value] Changes the view of output. Possible values:
oneline, short, full, fuller, format

-- graph Shows the graph with current branch and merging history

$ git log --pretty=oneline -1
ca82a6dff817ec66f44342007202690a93763949 changed the version number
$ git log --pretty=format:"%h - %an, %ar : %s“ -1
ca82a6d - Scott Chacon, 6 years ago : changed the version number

Reverting local changes

git commit --amend
This command allows you to make some changes in your last commit.

$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README
 modified: CONTRIBUTING.md

git reset HEAD [file]

To unstaging a staged file. Git status will help you:

Unmodifying a modified file. Git status will help you again:

git checkout --[file]

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

Git Branching

A branch in Git is simply a lightweight movable pointer to one of commits.

What branch is?

Creating new branch

git branch [name]

HEAD a special pointer, which allows GIT to know what branch you’re currently on.

Only creates a branch, does not switch on it.

Git Branching: Example

git checkout -b testing

[change something]
git commit -a -m 'made a change'

Switch to another branch

git checkout master [made another changes]
git commit -a -m 'made other
changes'

Branching & merging workflow

Possible git workflow

$ git checkout -b iss53
Switched to a new branch 'iss53'

[working on iss53]
$ git commit -a -m ‘issue53 add footer'

$ git checkout master
Switched to branch 'master'

$ git checkout -b hotfix
Switched to a new branch 'hotfix‘
[do some fixes]
$ git commit -a -m 'fix something'

$ git checkout master
$ git merge hotfix
Updating f42c576..3a0874c
Fast-forward

git merge Join two or more development histories together

$ git branch -d hotfix
Deleted branch hotfix (was 3a0874c).
$ git checkout iss53
Switched to branch 'iss53'
[Finish working on iss53]
$ git commit -a -m 'finish [issue 53]'

Basic merging

$ git checkout master
$ git merge iss53
Auto-merging README
Merge made by the 'recursive' strategy.

Merge conflicts

$ git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process while you
resolve the conflict. If you want to see which files are unmerged at any point after a merge
conflict, you can run git status:

$ git status
On branch master
You have unmerged paths.

(fix conflicts and run "git commit")
Unmerged paths:

(use "git add <file>..." to mark resolution) both modified:
index.html

no changes added to commit (use "git add" and/or "git commit -a")

git mergetool Run an appropriate visual merge tool

After merging you should add to index and commit the changes.

Remote and local branches

Remote branches

Pushing branch to remote

git push (remote) (branch)

$ git push origin serverfix
...
* [new branch] serverfix -> serverfix

git push origin serverfix:newname to give remote branch another name

Deleting remote branch

git push [remotename] :[branch]

Fetching / pulling remote branches

$ git fetch origin
...
* [new branch] serverfix ->
origin/serverfix

Someone else do:

Local branch is not created.

$ git checkout -b serverfix origin/serverfix to get a local copy of remote branch

Git reflog

git reflog

ad0096f HEAD@{10}: checkout: moving from new to master
d82a8e0 HEAD@{11}: commit: n3
2ae10cd HEAD@{12}: commit: n2
c1c51a3 HEAD@{13}: commit: n1
ad0096f HEAD@{14}: checkout: moving from master to new
ad0096f HEAD@{15}: commit: clean

get reference log

Resources

About Git – short guide
https://git-scm.com/book/en/v2

1

Git Reference Manual
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

2

LearnGitBranching
http://learngitbranching.js.org/

3

Git shell download page
https://desktop.github.com/

4

In case of fire...

Q&A

Do you have any
questions?

Thank you!

