Advanced x86:

BIOS and System Management Mode Internals
Reset Vector

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html”

2

Reset Vector
Execution Environment

| nenn‘f

L) TI!‘IESIIT oF IIE&JL

Real-Address Mode (Real Mode)

The original x86 operating mode
Referred to as “Real Mode” for short
Introduced way back in 8086/8088 processors

Was the only operating mode until Protected Mode (with
its "virtual addresses") was introduced in the Intel 286

Exists today solely for compatibility so that code written
for 8086 will still run on a modern processor
— Someday processors will boot into protected mode instead

In the BIOS’ | have looked at, the general theme seems
to be to get out of Real Mode as fast as possible

Therefore we won'’t stay here long either

E6400 Registers at Reset

Processor State After Reset

EAX 00000000
e 00000000 « EAX, EBX, ECX, EBP, ESI, EDI, ESP are
all resetto O

ECX 00000000 - EDX contains the CPU stepping

EDX 00010676* identification information

EBP 00000000 — Same info returned in EAX when CPUID is
called with EAX initialized to ‘1’

—— 00000000 — *This will vary of course, the value in the table

EDI 00000000 to the left corresponds to the Core2Duo inside
the E6400

ESP 00000000 - The base registers are 0 with the exception

Cs F000 of CS which is initialized with FOO0

DS 0000 « EIP (or IP since it's 16-bit mode) is

- 0000 initialized with (0000)FFFO

0000 — CS:IP = F:FFFOh

ES « EFLAGS is 00000002h

FS 0000 — Only hard-coded bit 1 is asserted

GS 0000 — If | were sitting at a breakpoint at the entry
vector, then bit 16 (resume flag) would be

EIP 0000FFFO asserted indicating that debug exceptions

EFLAGS 00000002 (#DB) are disabled.

Processor State After Reset:
Control Registers (CRs)

313029 28 1918 17 16 15 6§54 3210
PIC|N A W NIE|TIE|MP
G|D (W M B EITIS|M|P|E CRO

Most notable bits are high-lighted
Reserved

Control registers CR2, CR3, and CR4 are all 0
CRO is 6000 _0010h (likely since Pentium)
Paging (bit 31) is disabled

— All linear addresses are treated as physical addresses

Protection Enable (bit 0) is 0

— O indicates that we are in Real Mode
— 1 indicates we are in Protected Mode

All the other bits are 0

Reset Vector

\ Controfler

Intel® ICH9

LPC I/F

BIOS Flash Chi

p

AY
\
\ \
N \
\ \\
N \
\

System Memory

- At syste?n reset, the an initial
(“bootstrap”) processor begins
execution at the reset vector

~"« The reset vector is always
located on flash at "memory"
address FFFF_FFFOh

— The whole chip is mapped to
memory but not all of it is readable
due to protections on the flash
device itself

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

Reset Vector Decoding

LPC I/F

BIOS Flash Chi

p

\
Dl—lljl—l\
\ \
\
\ \
AY
N \\
\

System Memory

« Decoding (routing) is performed
via decoders located in the
chipset

» As far as the CPU is concerned
it is fetching instructions from
memory

« Butin fact it’'s from the SPI flash

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

Aside: Forensics People

* If the top of memory always contains a memory-mapped copy of
part of the SPI flash chip, that means it should theoretically show
up in memory forensic dumps (e.g. those given out by memory
forensic challenges)

* |’'ve never had time to test this, but you should see if you can go
grab some memory forensics dumps and determine whether there
is a complete copy of the BIOS in the memory dump, or only a
partial copy (and if partial, where it ends)
— Probably should start by testing on a system you have known BIOS
dump for
— As | mentioned before, virtual machines have virtual BIOSes, so you
could also determine if the dump was taken off a virtual machine by
comparing against some virtual BIOSes
* Let me know what you find! :)

— A volatility plugin to carve BIOS out of memdumps would be cool &
* |IRC someone might have done this now, but | can’t find the link again...

A

Specific Window Help

index | !!!4 !EZEJ[$%§H “n;m‘

Mini-Lab: BIOS Flash Decoding

us 00, Device 1F, Function 00 - Intel Corporation ISA Bridge

216
00
10
20
30
40
50
60
70
80
90
A0
BO
co
DO
EO
FO

0100
8086

1001

8A83
0000
0000
0E20

0009
8001

0307 oous
2917

8A8B
0000
3C04
gouo
00F0
100C
FED1

0107
00EO
0080
0000
00D1

Uuuy
0901

0000
0239

o] USUS

0210 0003

1081
838A
007C
0000 0000
0080 1C2B

0oos

0F86

:}_:; 0000
03C 0000
0000

UBOA
0601

8088

004A
0001

0003

oboc

1028
0000
0010
0OF8
0000
0Cs1
0000
0300
0000

0000
0008

O0F0E
0080

0233
0000

003C

4000
0000

Let’s look at some of the
decoding (routing) of the BIOS
to memory

Open RW Everything and click
on the PCI tab to open up the
PCIl window

Click the drop-down tab and
select Bus 00, Device 1F,
Function 00

This is the LPC device

Click on the Word 16 bit button
to arrange the PCI configuration
registers into 16-bit words

Notice word offset D8-D9h

10

Mini-Lab: BIOS Flash Decoding

FWH_DEC_EN1—Firmware Hub Decode Enable Register

(LPC I/F—D31:F0)
Offset Address: D8h-D9h Attribute: R/W, RO
Default Value: FFCFh Size: 16 bits
Bit Description
FWH_F8_EN — RO. This bit enables decoding two 512-KB Firmware Hub memory
ranges, and one
128-KB memory range.
15 0 = Disable

1 = Enable the following ranges for the Firmware Hub

FFF80000h - FFFFFEFER

FF FFh

.

v

14

N

WH_FO_EN — R/W. This bit enables decoding two 512-KB Firmware Hub memw\.

ranges.
0 = Disable.

1 = Enable the following ranges for the Firmware Hub:

FFF00000h - FFF7FFFFh

FFB00000h - FFB7FFFFh /
FWH_E8_EN = e i ¥ are Hub memory |

ranges.

Note: “FWH” is substituted with “BIOS” in the

above in the newer datasheets

Offset D8-D9h is FWH_DEC_EN1

As stated, this controls the
decoding of ranges to the FWH

If your system uses SPl and not a
Firmware Hub (and it does since
FWH is very rare), it still decodes
to the SPI BIOS

We want bit 14 which decodes
FFFO_0000h — FFF7_FFFFh

11

Mini-Lab: BIOS Flash Decoding

Access Specific Window Help

inde ndex [3 v SPDY M -Ei =
EPFOTEERT FELED

Click Memory button and

type address FFFO0O000

Memory

7] 4 5]

word

dword
32bit

il ra
W

= G Gl N]] i i | @

[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge
216 0100 0302 0504 0706 0908 0BOA obocC
00 8086 2917 0107 0210 0003 0601 0000
10 0000 0000 0000 0000 0000 0000 0000
20 0000 0000 0000 0000 0000 0000 1028
30 0000 0000 00ED 0000 0000 0000 0000
40 1001 0000 0080 0000 1081 0000 0010
50 0000 0000 0000 0000 0000 0000 0000
60 8A83 8A8B 00D1 0000 838A 8088 00F8
70 0000 0000 0000 0000 0000 0000 0000
80 0000 3C04 0901 007C 0000 0000 0C81
a0 0000 0000 0000 0000 0000 0000 0000
A0 0E20 0000 0239 0080 1C28B 004A 0300
BO 0000 00FO0 0000 0000 0008 0001 0000
Co 0000 0000 0000 0000 0000 0000 0000
DO 0000 0000 0000 0000 FFCC 0000
EO 0009 100C 0200 03C4 0004 0008 0000
FO 8001 FED1 0000 0000 0F86 0000

0F0E
0080
0000
0233
0000
0000
0000
0000
0000
003C

0000

0000
0000

0000

ﬁ Address = FFFO0000

Therefore, with FWH_DEC_EN
bit 14 asserted, we’re decoding
to a portion of BIOS binary

16bit

29 E1 OE
11 74 04
66 8B D9
45 34 F2
D2 77 EO
85 10 72
07 05 16
14 D1 F7
75 3B 82

——

i@

12

Mini-Lab: BIOS Flash Decoding

* This memory range is still read-only

e * This example is to help provide a picture
P-ii M byte | word| dword ;I g e ey .

EI@ W [T sbit] 166 326if A of the initial boot environment
[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge ’v] |

216 | 0100 | 0302 | 050¢ | 0706 | 0308 | 0B0A | 0DOC | oFor WM Miemory

00 8086 2917 0107 0210 0003 0601 0000 0080 L!l L@_‘ o &l A =] byt | word &

10 0000 0000 0000 0000 o000 oooo oooo oooo Ll UmEnl 7] 8bit| 16bit 1

20 0000 0000 0000 0000 0000 0000 1028 0233 s

30 0000 0000 00EOD 0000 0000 0000 0000 0000 ‘ Address = FFFOQQ00

40 1001 0000 0080 0000 1081 0000 0010 0000

50 0000 0000 0000 000O0 00OO 0000 0000 0000

60 8A83 8A8B 00D1 0000 838A 8088 00F8 0000

70 0000 0000 0000 0000 0000 0000 0000 0000

80 0000 3C04 0901 007C 0000 0000 0C81 003C

1] 0000 0000 0000 0000 0000 0000 0000 0000

AD 0E20 0000 0239 0080 1C2B 004A 0300 4000

BO 0000 O0OF0O 0000 0000 0008 0001 0000 0000

Co 0000 0000 0000 0000 0000 0000 0000 0000

DO 0000 0000 0000 0000 B ~ 0000 0008 0000

EO 0009 100C 0200 03C4 0004 0000 0000 000D

FO 8001 FED1 0000 0000 ﬂOFBG 0003 0000 0000
Hardware /

* De-assert bit 14 (set to
OxBFCC)
 Decoded to memory now =

13

Mini-Lab: BIOS Flash Decoding

W - Reod & Wi GRS T

Access Specific Window Help

L7 T F- -] Praleebelal 9

PCI
. byte | word| dword] 2
= 'l Gl A1 8 5 o]] o] i | @)
[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge -
216 0100 0302 0504 0706 0908 0BOA obocC 0F0E
00 8086 2917 0107 0210 0003 0601 0000 0080
10 0000 0000 0000 0000 Qo000 00 0000 0000

20 0000 0000 00 0000 1028 0233
30 0000 0000 0000 0000 0000 0000
40 1001 0000 1081 0010 0000
50 0000 00 0000 0000 0000 0000
60 8A83 0000 838A 8088 00F8 0000
70 0000 0000 0000 0000 0000 0000
80 0000 3C04 0901 007C 0C81 003C
a0 0000 0000 0000 0000 0000 0000 0000 0000
A0 0E20 0000 0239 0080 1C2B 004A 0300 4000
BO 0000 00F0 0000 0008 0001 0000 0000
Co 0000 0000 0 0000 0000 0000 0000
DO 0000 0000 0000 000 a 0008 0000
EO 0009 100C 0200 03C4 S 0000 0000 0000
FO 8001 FED1 0000 0000 0F86 0003 0000 0000

Reset it back to OxFFCC
Couple of notes:

Your original values may differ
since BIOS flips them on and
off as the developers decided
necessary

Bit 15 is Read Only and always
asserted

14

Mini-data-collection Lab:
Reset Vector in BIOS Binary

&% File Edit Search View Analysis Extras Window ? - &%
Ly iy 16 [ﬂ\ ANSI H' hex E
&) e6400_bios_A29.bin
Offset(n) 00 01 02 03 04 05 06 07 O8 09 OA OB OC OD OE OF
003FFF70 FF FF 00 00 FD 9F 01 FF 78 00 00 FF FF FF 00 00 #¥..v¥.¥x..yyv..
003FFF80 EA& 87 FF 00 00 08 00 B8 10 00 8E D8 8E CO 8E EO &%V....,.. Z@ihzZa
003FFF90 90 EA FO FF 30 00 00 00 00 00 00 00 00 00 00 00 .&8¥0...eeeeeenn |
Q03FFFAO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +vveeeeeenennnns
003FFFBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +vveeeeeeeennnns
003FFFCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +vveeeeeeeeennns |
Q03FFFDO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +vveeeeeenennens
003FFFEQ Qoea@=aQ 00 00 00 00 00 00 00 00 00 00 00 00 00 +vveeeeeeeeeenns |
003FFFFO o 00 00 00 00 00 00 00 00 00 00 00 00 €=P...eeeeeeennn
||
Offset: 0 Overwrite

 If we dump the BIOS and look at it in a hex editor, at the end
of the file we will see a jump instruction (near, relative jump)

« The chipset aligns the flash so that the limit of the BIOS
region (always either the only/last region on the flash) aligns
with address FFFF_FFFOh

« The CPU executes these instructions in 16-bit Real Mode

Real Mode Memory

16-bit operating mode
Segmented memory model

When operating in real-address mode, the default
addressing and operand size is 16 bits

An address-size override can be used in real-address
mode to enable access to 32-bit addressing (like the
extended general-purpose registers EAX, EDX, etc.)

However, the maximum allowable 32-bit linear address is
still OOOF _FFFFH (220-1)

So how can it address FFFF_FFFOh?

— We’ll answer that in a bit

Real Mode Addressing: Segment Registers

19 4 3 0

Base 16-bit Segment Selector 0000

19 16 15 0

Offset | 0000 16-bit Effective Address

19 0

o dL(;‘:eesas' 20-bit Linear Address

Figure 20-1. Real-Address Mode Address Translation

CS, DS, SS, ES, FS, GS

Only six segments can be active at any one time

16-bit segment selector contains a pointer to a memory segment of
64 Kbytes (max)

16-bit Effective address can access up to 64KB of memory address
space

Segment Selector combines with effective address to provide a
20-bit linear address

So an application running in real mode can access an address
space of up to 384 KB at a time (including stack segment) without

switching segments
17

Real Mode Addressing

19

Base 16-bit Segment Selector

0000

19 16 15

Offset | 00 0 0

16-bit Effective Address

19

Address 20-bit Linear Address

Figure 20-1. Real-Address Mode Address Translation

1234:5678 =

12340H

+ 5678H

179B8H

Intel Developers Manual, 20.1.1

As shown in Figure
20-1 in the Intel SW
Developers guide

The Segment Selector
(CS, DS, SS, etc.) is
left-shifted 4 bits

The 16-bit Segment
Selector is then added
to a 16-bit effective
address (or offset if you
will) within the segment

Remember, upon entry
into the BIOS, all linear
addresses are
translated as physical
(per CRO)

18

Real Mode Addressing Problem: Overlap

 Addresses in different

1234:5678 = 12340H segments can overlap
T il - Given such a limited
“““ environment it's no
@) wonder we want to
choose a different
1663:1338 = 16630H operating mode as soon
+ 1338H as possible
S

Intel Developers Manual, 20.1.1

F:FFFO != FFFF:FFFO

« Every segment register has a “visible” part and a
“hidden” part.

* |ntel sometimes refers to the “hidden part” as the
“descriptor cache”

 |t's called “cache” because it stores the descriptor
iInfo so that the processor doesn’t have to resolve it
each time a memory address is accessed

Visible Part Hidden Part
~ Segment Selector | Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Descriptor Cache

« “When a segment selector is loaded into the visible part of a
segment register, the processor also loads the hidden part of
the segment register with the base address, segment limit,
and [access information] from the segment descriptor pointed
to by the segment selector.”

 Real Mode doesn’t have protected mode style access-control
so the [access information] part is ignored

* This means that the hidden part isn’t modified until after a
value is loaded into the segment selector

« So the moment CS is modified, the CS.BASE of
FFFF_OOOOH is replaced with the new value of CS (left
shifted 4 bits)

Intel SW Dev, Vol 3, Sec 3.4.3

Vol

CS.BASE + EIP

CS.BASE is pre-set to
FFFF_0000H upon CPU
reset/power-up

EIP set to 0000_FFFOH

So even though CS is set to
FOOOH, CS.BASE+EIP
makes FFFF_FFFOH

So when you see references
to CS:IP upon power-up
being equal to F:FFFOh,
respectively, now you know
how what it really means
and how it equates to an
entry vector at FFFF_FFFOh

. 3, Figure 9-3

[CS.BASE+EIP] -

EIP = 0000 FFFOH
CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = OH
SS.BASE = OH

ESP = 0H

[SP, DS, SS, ES]

>

»

After Reset

FFFFFFFFHA A
FFFF FFFOH

64K EPROM

|
\

FFFF 0000H

Reset Vector

« SO0 upon startup, while the processor stays in Real
Mode, it can access only the memory range
FFFF_0000h to FFFF_FFFFh.

 If BIOS were to modify CS while still in Real Mode, the
processor would only be able to address 0_0000h to
F FFFFh.

— PAMO helps out by mapping this range to high
memory (another decoder)

« So therefore if your BIOS is large enough that it is
mapped below FFFF_0000H and you want to access
that part of it, you best get yourself into Protected
Mode ASAP.

— And this is typically what they do

Analyzing any x86 BIOS Binary

&

Graph overview

With UEFI we can usually
skip straight to analyzing
code we care about.

But what if you want to
analyze a legacy BIOS, or
some other non-UEFI| x86
BIOS like CoreBoot?

In that case you may need to
do as the computer does, and
really read starting from the
first instruction

The subsequent slides
provide the generic process
to do that

24

A dream deferred

* We're going to hold off on the rest of the entry
vector analysis for now, and go back to it later
if we have time.

— We never have time ;)

* | left the slides in here for if you want to try to
go through an equivalent process

— Note: | know the slides are a little hard to follow
and occasionally make jumps in intuition. I've
been wanting to clean these up from John’s
version, but haven’t had time

1: Disassemble the BIOS Binary

Load a new file [-th
Load file C:\Usershjohnb\Desktop\BI0S_ClasshLabshlabs\DA-Get-to-Prot-Ma
Processor type
[Intel 80x86 processors: metapc v

Analysis
Loading segment 000000000 @] Enabled
Loading offset 0x00000000 V| Indicator enabled
Options
{ | Create segments [Kernel options] J
V| Load as code segment
Rename DLL entries '
M anual load [Kernel OptlonSZ]
Fill segment gaps
Loading options [Processor options]
Do not align segments
System DLL directory C:\Windows
[0K J [Cancel] [Help

—

Acquire a dump of the BIOS
flash from a tool like Flashrom or
Copernicus and open it in IDA

Intel 80x86 metapc setting is fine
regardless of IDA version

Choose to disassemble in 32-bit
mode

Not a typo, most BIOS’ jump into
32-bit protected mode as soon
as possible

— If your BIOS is much older, just
edit the segment to 16-bit

| have the full version of IDA Pro
but am using Free version 5.0 to
show you that this works with
that version

Other debuggers like OllyDbg
should also work

26

FIXME

e Update procedure for new IDA demo 6.6

'Z] IDA View-A

segBBg:
* seqB60:
* seqgB66:
* segB80:
* seqB60:
* seqB60:
* seqB66:
* seqB60:
* seqB08:
* segB60:
* seqgB66:
* segB80:
* seqB60:
* seq060:
* seqB66:
* seqB60:
* seqB08:
* seqgB60:
* seqgB66:
* segB60:
* seqB00:
* seq060:
* seqB66:
* seqB00:
* seqB08:
* segB60:
* seqBBB:

8819FFDD
8619FFDE
6619FFDF
OB19FFED
B619FFE1
8819FFE2
8819FFE3
0019FFEY
8819FFES
BB19FFES
B619FFE7
O619FFES
8819FFE?
8819FFERA
8619FFEB
8819FFEC
8819FFED
8619FFEE
B619FFEF
O619FFF0O
B619FFF1
8819FFF2
8819FFF3
0019FFF4
B619FFF5
B819FFF6
B619FFF7

2. Rebase the Program

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

BE%h ;
3Dh ;
6FEh ;

- -

» First thing we’re going to
do is rebase the program

« \We know the entire image
of this BIOS is mapped to
memory so that its upper
address boundary is at
FFFF_FFFFh with the
entry vector at
FFFF_FFFOh

» Let's touch these up to
reflect this

28

2.1: Rebase the Program

“File Edit Jump Search View Options Windows Help

B’} 2
= Begin selection Alt+L
3 Select identifier Shift+Enter
| B oo Code C
b Data D
Et&' Struct var...
= 's" Strings 4
E * Array... Num
= X Undefine U
E N Rename N
Operand type 4
Comments »
| Segments
Structs 4
Functions »
Other 4
* 5eq080:3FFFEF
* seqB00:3FFFFO
* seqgB88:3FFFF1
* segBB8B:3FFFF2
* segBB8B:3FFFF3

| 1 HText

) |

W~ SHUHKi=~

. ytsllﬁ Importsl N Namesl"@] Functions | " !

db
db
db

Create segment...

Edit segment...

Delete segment...
Move current segment

Rebase program...

Change segment translation...
Change segment register value...
Set default segment register value...

Alt+S

Alt+G

If you encounter a size-related error, open the binary
file with a hex editor (like HxD) and delete the last
byte. Then re-open the binary in IDA and rebase it.
Still treat it like it were its original size.

In this lab our file contains
only the BIOS portion of the
flash.

The value to enter is:

4 GB — (Size of BIOS Binary)
For this lab it is OxFFEG60000
— (for BIOS Length 1A0000h)
Example: If you had a 2 MB
BIOS binary you would

rebase the program to
FFEO _0000h

The idea is for the entry
vector at FFFF_FFFOh in
memory to be displayed in
IDA at linear address
FFFF_FFFOh

29

2.2: Rebase the Program

F;ﬂ IDA View-A i r@] Hex View-.é.l =) Exports I Eﬁg Importsl N Names I "@i Functions | "-

* You know you have done it

[2) IDA View-A right when you see

* seq@BB:FFFFFFES db a . .

* 5eq888:FFFFFFE7 db 8 executable instructions at

* seqOO00:FFFFFFES db a

> segBBB:FFFFFFEQ db (] FFFF FFFOh, such as:

* segBBB:FFFFFFERA db) -

* se - db 8 °

* SegO00:FFFFFFEC @b o E9Q 3D FE

id B00:FFFFFFED db 5] . .

: gﬁgBBB:FFEEEEEE T « E9is a relative JMP

* seqgB80:FF

* 5eq000:FEFFFEFD b 6E9h 5 T instruction (JMP FE3Dh)

seqBB80:FFFFFFF1 db 3Dh ; =

* se : OFEh ; | . H ;

¢ SegOO0:FFFFFFF3 5 B « Note: The JMP instruction

* SeQOBOLFFFFFFFS @ o may be preceded by a

. <eqO00-FFFFFFF7 ab b WBINVD instruction or a

¥ segBB0:FFFFFFF8 db a . .

* 5eq080:FFFFFFF9 b 6 couple NOP instructions

* segBBB:FFFFFFFA db))]]

4 Sl L a9 — In this case, these instructions

* ceg00B:FFFFFFFD @b will be at FFFF_FFFOh

e - 5. instead of the JMP

< I

003FFFF0 FFFFFFFO: seg000:FFFFFFFO

* There always will be a JMP

here following those

30

3. Determine IDA Segments:
Manually Analyze the Reset Vector JMP

<

003FFFFO

FFFFFFFO: seg000:FFFFFFFO

I

F_:E'] DA View-& I R HexView-Al =) Exports | Eﬁg Importsl N Names l "@ Functions]
>
=] IDA View-A
* seq@BB:FFFFFFES db a
* seq@88:FFFFFFE7 db 8
* segBBB:FFFFFFES8 db a
* segBB8B:FFFFFFE9 db a8
* segBBB:FFFFFFERA db)
* seq@88:FFFFFFEB db 8
* seqB8B:FFFFFFEC db 5]
* seqBBB:FFFFFFED db a
* seq@8B:FFFFFFEE db a
* ceqB08:FFFFFFEF db 8
* seqB008:FFFFFFFO db BE9h ; T
* seqBBB:FFFFFFF1 db 3Dh ; =
* 5eq080:FFFFFFF2 db_OFEh ; !
* seq@88:FFFFFFF3 db 8
* seqBBB:FFFFFFF4 db (5]
* seqB8B:FFFFFFF5 db a8
* seq@80:FFFFFFF6 db a
* seq@88:FFFFFFF7 db 8
* segBBB:FFFFFFF8 db a
* segB8B8B:FFFFFFF9 db a8
* segBBB:FFFFFFFA db)
* seq@88:FFFFFFFB db 8
* seqB8B:FFFFFFFC db 5]
* seqBBB:FFFFFFFD db a
* seq@8B:FFFFFFFE db a
seqB08:FFFFFFFE seq008 ends

So now we want to create
some IDA segments to help
us (and IDA) interpret the
disassembly

One goal is to keep the
16-bit segment that
contains the entry vector as
small as possible

— From experience, BIOS takes
a FAR JMP away from here
after entering protected mode

JMP FE3Dnh is relative to
the address following the
JMP:

FFFF_FFF3h, in this case

31

3.1: JMP rel16

JMP—=Jump
Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit displacement sign
extended to 64-bits

IMP rel16 55 Jump near, relative, displacement relative to

next instruction. Not supported in 64-bit
mode.

€9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP + 32-bit
displacement sign extended to 64-bits

The address following our JMP instruction is FFFF_FFF3h
— WEeé'll treat it like a 64KB segment (FFF3h) for easier readability

— Technically it is a 64KB segment so we don’t have to worry about this
assumption throwing off our calculation

» Take the 2's compliment of the operand in the JMP FE3Dh instruction:

1. (FE3Dh - 1) = FE3Ch
2. ~FE3Ch = 01C3h

« Subtract this displacement from the address following the JMP
instruction to find the destination:

 FFF3h - 01C3h = FE30h

Intel SW Developers Guide, Vol. 2, Intel Instruction Set Reference

32

3.2: Determine Segment Boundary

:FFFFFDFD
:FFFFFDFE
J9:FFFFEDFF_ _ _ _ _ _ _ _ _db OFFh _ _
:FFFFFEB0
:FFFFFEB1
:FFFFFEB2
:FFFFFEB3
:FFFFFEBY
:FFFFFEO5
:FFFFFEB6
:FFFFFEB7
:FFFFFEB8
:FFFFFEB9
:FFFFFEBA
:FFFFFEGB
:FFFFFEBC
:FFFFFEBD
:FFFFFEBE
:FFFFFEBF
:FFFFFE18
:FFFFFE11
:FFFFFE12
:FFFFFE13
:FFFFFE14

ME M NI MY w

ToacCrMkH~WwIrM~

So we know the destination of
the JMP at the entry vector is
FFFF_FE30h

We can now make an
assumption that the address
FFFF FEOOh can serve as a

segment boundary for us

Our goal is to keep the
segment containing the entry
JMP as small as possible

The assumption is that code
will be aligned and will take a
far JMP to a lower address
space

This assumption is based on
experience, but could vary

Remember these are
segments to help IDA
translate our disassembly,
not necessarily mimic the

system .

4: Create Initial 16-bit Segment

Edit —> Segments —> Create

@ o ; " Segment
db 0 Create a new segment 28]
@ o . Pick any segment name you want
db 8 art address and end aadress snou e valid.
::: g S End agdreSs >dgtart a:drelgsb . ¢ CIaSS can be any teXt name
a2 Segment parme. | boot 3 * 16-bit segment
db BE9h : T Start address O=FFFFFEDD v (-notation:
i 0= || e B - Start Address = OxFFFFFEQO
db 0 Be OO0+ gt + End Address = OxFFFFFFFE
@ e weat® Ml — Remember: IDA Does not like the
o 3 . address FFFFFFFF (-1) !!
a® 0 < ot — Actually, according to IDA
db 0 documentation, the 32-bit version of
5 s o] (ieci) [mtice IDA doesn’t “like” any address at or
e L) above FFO0_0000h =
+ Base = OxOFFFF000
— CS.BASE = FFFF_0000h on boot
VirtualAddress = LinearAddress - (Base << 4)
FEFFO FFFF:FFFO - (Base << 4)

34

5: ldentify Memory Model

boot:FFEC db (5]
boot :FFED db a
boot :FFEE db (5]
boot :FFEF db a
boDEIFFED ; === e e e e e e e e e
boot:FFF@ jmp loc_FFFFFE30
BOOESEREED 5 —co--==oooo=oo=s===ooo==oer====ks=sss==Es
boot :FFF3 db 8 ,
boot:FE38 ; ———
boot:FE30
boot:FE30 loc_FFFFFE38: s CODE XREF:
boot:FE38 db 66h
™* boot:FE38 lqdt fword ptr cs:byte FFFFFF78
boot:FE37 db 66h
* boot:FE37 lidt fuword ptr cs:byte_FFFFFF7E
* boot:FE3E mov eax, cr@
* boot:FEM1 or al, 1
* boot:FE43 mov cr@, eax
* boot:FE46 jmp short $+2
* boot:FE48 mov ax, 16h
* boot:FE4B mov ds, ax
boot :FE4D assume ds:nothing
* boot:FE4D mov es, ax
* boot:FE4F mov fs, ax
__* boot:FES51 jmp large far pt
) e B o

Once this segment is
created, IDA
“automagically”
recognizes the destination
of the entry vector jump

What we see here is the
BIOS preparing to enter
protected mode

Likely it will be using a flat
memory model

Note the ‘8" in the far jump
operand

That references the entry
at offset 8 in the GDT

Now let’s look at that
LGDT instruction

35

All of the following GDT information is also covered in Intermediate x86

5.1: LGDT Instruction

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leg Mode
0OF017/2 LGDT m16&32 M N.E. Valid Load minto GDTR.
OF01/3 LIDT m16&32 M N.E. Valid Load minto IDTR.
0F017/2 LGDT m16&64 M Valid N.E. Load minto GDTR.
0OF01/3 LIDT m16&64 M Valid N.E. Load minto IDTR.

« LGDT loads the values in the source operand into the global descriptor
table register (GDTR)

« The operand specifies a 6-byte structure containing the size of the
table (2-bytes) and a 4-byte pointer to the location of the table data

« The table data contains segment bases, limits, access rights

« More than likely it will be a single base of 0000 _0000h and a limit of
FFFF_FFFFh

 |f this is true, then they are using a Flat Memory Model
— And you shall rejoice!

— Really there is no point in not using the flat memory model, you can
generally just assume they are

36

aview | [HewViews | 3B Expons | ER Imports | N Names | %) Funcions | *. Stings| B Stuctures |

BB x| &
[S1515
866 ;
0ee6 ;

51515]
515 15)
66e
062
864
865
866
867
668
668

800 ;

(1515
515 15)
S1515)
862
063
863

008 ; ———-

S5 15)
S5 15)
S5 15)
862
664
865
866
868
668

06o8 ;

515 15)
S5 1)
66e
862
863

5.2: Import GDT/IDT Structures

N

GdTEntry
limit_low
base_low
base_middle
access
granularity
base_high
GAdTEntry

GdtPtr
limit
base
GdtPtr

IdtEntry
base_low
sel
always_8
flags
base_high
IdtEntry

IdtPtr
limit
base
IdtPtr

struc ;

dw ?
dw ?
db ?
db ?
db ?
db ?
ends

struc ;

dw ?
db ?
ends

struc ;

duw ?
dw ?
db ?
db ?
dw ?
ends

struc ;

dw ?
db ?
ends

{sizeof=0x8)

{sizeof=8x3)

{sizeof=0x8)

{sizeof=0x3)

: rename structure or structure member
: delete structure member

I

You can import these
structures into IDA by
parsing the file
“descriptors.h”

Screenshot included so
you can enter them
manually if necessary

IDT structures are also
provided

Importing structures like
this is very useful for
analyzing BIOS

Legacy BIOS is filled with
proprietary structure
definitions

Contrasted with UEFI
structures which are
defined in a
publically-released

http://www.jamesmollov.co.uk/tutorial html/4.-The%20GDT%20and%20iD Btgdard

37

5.3: Define GdtPtr

Go to the address referenced by the operand to the LGDT instruction
IDA will have already tried to interpret this and failed, undefine that

boot:FF78 unk_FFFFFF78 db 78h ; x |0101 = DOTO0 YREC= hgot:loc FFFFFE30Tr
boot :FF79 db 8 con Code C
boot:FF7A db 8 ot Byte 78h
boot:FF7B db BFFh 0101
boot :FF7C db OFFh oat Word 78h
boot :FF7D db BFFh DAT Double word OFF000078h . _
boot:FF7E unk_FFFFFFZE db @ plstructure > FYlGtPHr (sizeof6) |
boot:FF7F db 9 Synchronize with 4 (
boot:FF886 db BEAh ; O
boot :FF81 db 87h ;
seqB01:FF77 db OFFh
seq081:FF78 stru_FFFFFF78 Gdt_Ptr OFFFFFF86h>
seqB881:FF7E unk_FFFFFF7E db § _—;
seqB061:FF7F db g

Now define it as structure of type GdtPtr

As per the structure definition, the first member is the size of the GDT
table and the second is a pointer to the location of the GDT entries

That pointer won't translate properly for us, but we can tell where the

entries are defined just by looking at the value

38

5.4: Define GDT Entries

segB61:FF77

seqBB1:FF78 stru_FFFFFF78
seqBB81:FF7E unk_FFFFFF7E db 5
seq881:FF7F db 8

db BFFh
Gdt_Ptr <78h, BOFFF FFBBh¥

IF@ Hex View-AJ ?ﬁ Exports l Eﬁg Imports-lﬂﬂ Names l "Lf]] Fyﬂions l . Stings | En Enumsl &
=oann ’I

v-A

* seq8061:FEFB
* seqB61:FEFC
* seqB61:FEFD
* seq®61:FEFE
* seq®61:FEFF
* segBB1:FFO0
* seq861:FF08

db 24/ ; §
db
db
db
db
GdtEntry <6>

GdtEntry <OFFFFh, 8, 8, 9Fh, OCFh, 8>

[~~~]

* segBB1:FF*° FE=DBFFN
5 599881:FF—“ Rename N BFFh
* seqgB01:FF] Jump to address... G]
,2?3331555: Mark position... Alt+M g

“FF o101
* 5eq@@1:FFDAT ByteOFFh 93h ; o
* 5eg061:FFba Word OFFFFh BCFh ; -
? 5eq801:FF| 3 Double word OFFFFh | ®
L Seg881:FF |og EYY A 1t czcor
¢ segam -FF; Alignment QY GdtEntry (sizeof 8)
* seqB061:FF Synchronize with » cﬁ' Gdt_Ptr (sizeof 6)
* seqgBB1:FFTC (1] 0 5 111 B
* seqB01:FF1D db 93h ; @

*There may be a superior way to set up our segments so that it all “just works”
but | have not found it yet. Also, disregard the different segment names.

We know it's location is in
our 16-bit segment

Manually go there by
jumping to seg:FF00
This is where the GDT
entries are defined

Look at the structure
definition in peewee.h to
interpret

The table size is 0x78 bytes,
but we only want the second
entry into the table at offset
8:

BASE = 0000_0000h

LIMIT = FFFF_FFFFh

This is the flat memory
model

These descriptors will be
used by the subsequent
code so you can fill out the
rest as needed

39

5.5: Full GDT

Elstruct GdAtEntry {
uintlé limit low; // The lower 16 bits of the limit
uintlé base low; // The lower 16 bits of the base.
uint8 base middle; // The next 8 bits of the base
uint8 access; // RAccess flags
uint8 granularity;
uint8 base high; // The last 8 bits of the base.
-} Gdt_Entry;

GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry
GdtEntry

<8

<OFFFFh, 8, 8, 9Fh, BCFh, 8>
<{BFFFFh, 8, 8, 93h, BCFh, 8>
<18066h, O, OC8h, 93h, O, BOFEh>
<BFFFFh, B8, 8, 93h, OCFh, ©>
<OFFFFh, 8, 8, 93h, B8, 8>
<BFFFFh, 8, OFh, 9Fh, B8, 8>
<OFFFFh, 8, 8, 93h, B8, &
<BFFFFh, 8, 8, 93h, B8, 8>
<OFFFFh, 8, 8, 93h, B8, 8>
<BFFFFh, 8, 8, 93h, B8, 8>
<BFFFFh, 8, 8, 92h, OCFh, 8
<BFh, BCBB6h, BEh, 9Fh, 86h, 6>
<BFFFFh, BEGOBh, OFCh, 9Fh, 8, OFFh)>
<BFFFFh, ©, OFDh, 9Fh, 1, OFFh>

The GdtEntry structure
definition in peewee.h can

be used to interpret the
GDT entries

Each structure is 8 bytes in
size

The FAR JMP is referencing
the second entry (offset 8)

Base O, Limit FFFF_FFFFh

40

5.5: Full GDT

%o GDT Descriptors [Base FFFFFFOOL Limit 0078] o3| 3]
Offset | Type | Attributes |values ||
0 0000 Reserved H=00000000 L=00000000
T 1=0 DPL=0 |B=00000000 L-FFFFFFFF [
2 0010 Data P=1 G=1 B=1 E=0 ¥=1 DPL=0 B=00000000 L=FFFFFFFF
3 0018 Data P=1 G=0 B=0 E=0 ¥=1 DPL=0 B=FEC80000 L=00001000
4 |0020 Data P=1 G=1 B=1 E=0 ¥=1 DPL=0 B=00000000 L=FFFFFFFF
5 |0028 Data P=1 G=0 B=0 E=0 ¥=1 DPL=0 B=00000000 L=0000FFFF
B | 0030 Code P=1 G=0 D=0 C=1 R= I=0 DPL=0 B=000F0000 L=0000FFFF
7 10038 Data P=1 G=0 B=0 E=0 ¥=1 DPL=0 B=00000000 L=0000FFFF
8 0040 Data P=1 G=0 B=0 E=0 ¥=1 DPL=0 B=00000000 L=0000FFFF
9 | 0048 Data P=1 G=0 B=0 E=0 ¥=1 DPL=0 B=00000000 L=0000FFFF
10 | 0050 Data P=1 G=0 B=0 E=0 W=1 DPL=0 B=00000000 L=0000FFFF
11 | 0058 Data P=1 G=1 B=1 E=0 ¥=1 DPL=0 B=00000000 L=FFFFFFFF
12 | 0060 Code P=1 G=1 D=0 C=1 R= 1=0 DPL=0 B=000EC000 L=0000FFFF
13 | 0068 Code P=1 G=0 D=0 C=1 R= 1=0 DPL=0 B=FFFCE000 L=0000FFFF
14 0070 Code P=1 G=0 D=0 C=1 R= L=0 DPL=0 B=FFFD0000 L=0001FFFF
< 1 \6DT {DTHLDTRY DT/ | « | m | »

« Here is the entire GDT for reference. You don’t need an expensive
debugger to analyze BIOS (but it does save a lot of time)

6: Create the 32-bit BIOS segment

Copernicus_Log.txt

Determining size of SPI flash chip
SPI Region 0 (Flash Descriptor) base = 00000000, limit = O0000fff
SPI Region 1 (BIOS) base = 00260000, limit = Q03fffff

megion 2 (Management Engine) base = 0000b000, limit = O025ffff
SPI Region 3 (Gigabit Ethernet) base = 00001000, limit = 00002fff
SPI Region 4 (Platform Data) base = 00003000, limit = 000Qafff
SPI Flash chip size = 0x00400000

7

* Now create the 32-bit segment il ks
o Start address is FFFF_FFFFh - <sjze of Start addf?:dazjd?zg;dgr;ftsasg;l;'gsbe valid,
the BIOS region> + 1 Somertione T -
— FFFF_FFFFh — 1A_0000h in this example Stataddiess OsFFEB0000 v Cpotation
— SPI regions will be explained more during BIOS End address OWFFFFFEOD v heyis Ox..
flash portion of the course Base 0x00000000 ~ i paragraphs
 End Address is our segment boundary e o ML T
Address € 16-bit seament
— FFFF_FEOOh in this example $ 2 bt semen
« Base Address matches that of the GDT e [e W
table, entry 8 (0000_0000h) \

/. Touch up the Far Jump

segBo1:
seqgBoi:
segBo1:
segBol:
segBgt:
segBot:
seqBe1:
segBot:
segBo1:
seqg@8bi:
segBg1:
segBo1:
segBgl:
segBol:
seqBe1:
segBo1:
segBo1:
seqg@8bi:
segBg1:
segBol:
segBgt:
segBgl:
seqBo1:
segBol:

FE38 ; Segment type: Regular

FE30 segB01 segment byte public '16bit’' use1é

FE38 assume cs:segB@1

FE38 ;org BFE36h

FE38 assume es:nothing, ss:nothing, ds:nothij
FE308

FE38 loc_FFFFFE38: 5 CODE XREF: s¢
FE30 db 66h

FE38 1lgdt fword ptr cs:byte_FFFFFF78
FE37 db 66h

FE37 lidt fword ptr cs:byte_ FFFFFF7E
FE3E mov eax, cr@

FE41 or al, 1

FE43 mov crBd, eax

FE46 jmp short $+2

FE48 mov ax, 16h

FE4B mov ds, ax

FE4D assume ds:nothing

FE4D mov es, ax

FE4F assume es:nothing

FE4F mov fs, ax

FES51 a 3 g

FE51 jmp large far ptr —>
FE G o e ee————— e = == — =

Enter alternate string for the 1 operand

Original operand: large far ptr 8:0FFFF0100h
Operand large far ptr bios:OFFFFO0100

V| Check operand

| Allow not matched operand

So we know that this is
loading the descriptor
entry at offset 8 in the
GDT

We can visually inspect
the operand of this JMP to
see that it's going to
FFFF_0100h

We can manually fix this
operand

Right click the operand
and select ‘Manual’

Change it to:
bios:FFFF0100h

Uncheck ‘Check Operand’
A little ugly

43

Graph overview

Welcome to BIOS Analysis

« Converting the binary at

FFFF_0100h to code provides you
the entry point to the real BIOS
initialization

Up until this point everything we
covered is pretty standard across
many BlIOSes

— This applies to UEFI BIOS too

— Even really old BIOS will basically
follow the path we took, perhaps
staying in real mode longer though

From here on though, if legacy, it's
completely proprietary to the OEM
(data structures, etc.)

By contrast, UEFI is standardized
from head to toe

44

FFFF_0100h

FFFF_FE30h

FFFF_FE48h

FFFF_FE51h

FFFF_FFFOh

Why so Ugly? IDA Segments

IDA can’t combine 16-bit and
32-bit instructions in the same
segment

We could have created another
32-bit segment to account for
the processor entering 32-bit
protected mode

But then we’'d have to create 4
segments

Not really necessary since we
can visually inspect it and
determine what’s going on
Fudging it is okay since the
important stuff happens after
all this

BIOS Reset Vector Analysis: Short Cut 1

7~

N
| |

Create a new segment XS

Start address and end address should be valid.
End address > Start address

Segment hame boot v

[otataddiess OsFFFFFFFD_ v natation:
End address OxFFFFFFFE v hexis 0w
Base O<0FFFFO00 + i paragraphs
Class seglb ¥ [class is any text)

@ 16-bit segment
() 32-bit segment

o] o]

You can likely skip a few of the
steps and make some
assumptions to get to the
initialization code faster:

Open your BIOS binary file in IDA
same as before

Rebase the program, same as
before

Don’t bother analyzing the entry
vector JMP, just create a 16-bit
segment the exact same as
before, except:

— Start Address: OxFFFFFFFO

— We can count on IDA being smart
enough to interpret this properly
even though it makes our
segment a little odd

46

BIOS Reset Vector Analysis: Short Cut 2

segBo1
seqg@8o1
segB@61
segB@1
segB@1
segBg1
seq881

segBot:

segBo1
seqg@8o1
segB@1
segBo1
segBg1
segBo1
segBg1

segBo1:

segBo1
seqg@o
segBg1
segBo1
segB@1
segBo1
seq881

segBol:

:FE308 ;

Segment type: Regular

:FE308 segB861 segment byte public '16bit’' use1é

:FE38 assume cs:segB@1

:FE38 ;org BFE36h

:FE38 assume es:nothing, ss:nothing, ds:nothij
:FE38

:FE38 loc_FFFFFE38: ; CODE XREF: s¢
FE30 db 66h

:FE38 1lgdt fword ptr cs:byte_FFFFFF78
:FE37 db 66h

:FE37 lidt fword ptr cs:byte_ FFFFFF7E
:FE3E mov eax, cr@

:FE41 or al, 1

:FE43 mov crBd, eax

:FE46 jmp short $+2

FE48 mov ax, 16h

:FE4B mov ds, ax

:FE4D assume ds:nothing

-FE4D mov es, ax

:FE4F assume es:nothing

:FE4F mov fs, ax

:FE51 a = g

:FE51 jmp large far ptr —>
FEGT e e e - — = — |

Enter alternate string for the 1 operand

Original operand: large far ptr 8:0FFFF0100h
Operand large far ptr bios:OFFFFO100

V| Check operand
| &llow not matched operand

Follow the entry JMP

— Notice that IDA
automagically modified
our segment so it begins
at seg:FE30

Manually touch up the FAR
JMP same as before

We could optionally create
a 32-bit segment here just
to ensure it has a base of
Oh

— Assume a flat memory

model

Now we can go to the real
BIOS initialization code
entry, just like before!

This shortcut doesn’t

always work -

Lab: Scratch the surface

* Repeat the process we just did for the E6400
BIOS on each of your BIOS dumps

 We'll see if there are any where it leads to
early confusion

;

48

