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Real-Address Mode (Real Mode)

• The original x86 operating mode
• Referred to as “Real Mode” for short
• Introduced way back in 8086/8088 processors
• Was the only operating mode until Protected Mode (with 

its "virtual addresses") was introduced in the Intel 286
• Exists today solely for compatibility so that code written 

for 8086 will still run on a modern processor 
– Someday processors will boot into protected mode instead

• In the BIOS’ I have looked at, the general theme seems 
to be to get out of Real Mode as fast as possible

• Therefore we won’t stay here long either
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Processor State After Reset

• EAX, EBX, ECX, EBP, ESI, EDI, ESP are 
all reset to 0

• EDX contains the CPU stepping 
identification information 
– Same info returned in EAX when CPUID is 

called with EAX initialized to ‘1’
– *This will vary of course, the value in the table 

to the left corresponds to the Core2Duo inside 
the E6400

• The base registers are 0 with the exception 
of CS which is initialized with F000

• EIP (or IP since it’s 16-bit mode) is 
initialized with (0000)FFF0
– CS:IP = F:FFF0h

• EFLAGS is 00000002h
– Only hard-coded bit 1 is asserted
– If I were sitting at a breakpoint at the entry 

vector, then bit 16 (resume flag) would be 
asserted indicating that debug exceptions 
(#DB) are disabled.

Name Value

EAX 00000000

EBX 00000000

ECX 00000000

EDX 00010676*

EBP 00000000

ESI 00000000

EDI 00000000

ESP 00000000

CS F000

DS 0000

SS 0000

ES 0000

FS 0000

GS 0000

EIP 0000FFF0

EFLAGS 00000002

E6400 Registers at Reset 
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• Control registers CR2, CR3, and CR4 are all 0 
• CR0 is 6000_0010h (likely since Pentium)
• Paging (bit 31) is disabled

– All linear addresses are treated as physical addresses
• Protection Enable (bit 0) is 0

– 0 indicates that we are in Real Mode
– 1 indicates we are in Protected Mode

• All the other bits are 0

Most notable bits are high-lighted
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Reset Vector

System Memory

BIOS Flash Chip

0 4GB

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

0x
FF
FF
FF
F0

LPC I/F

• At system reset, the an initial 
(“bootstrap”) processor begins 
execution at the reset vector 

• The reset vector is always 
located on flash at "memory" 
address FFFF_FFF0h
– The whole chip is mapped to 

memory but not all of it is readable 
due to protections on the flash 
device itself
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Reset Vector Decoding

System Memory

BIOS Flash Chip

0 4GB

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

0x
FF
FF
FF
F0

LPC I/F

• Decoding (routing) is performed 
via decoders located in the 
chipset

• As far as the CPU is concerned 
it is fetching instructions from 
memory

• But in fact it’s from the SPI flash
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Aside: Forensics People

• If the top of memory always contains a memory-mapped copy of 
part of the SPI flash chip, that means it should theoretically show 
up in memory forensic dumps (e.g. those given out by memory 
forensic challenges)

• I’ve never had time to test this, but you should see if you can go 
grab some memory forensics dumps and determine whether there 
is a complete copy of the BIOS in the memory dump, or only a 
partial copy (and if partial, where it ends)
– Probably should start by testing on a system you have known BIOS 

dump for
– As I mentioned before, virtual machines have virtual BIOSes, so you 

could also determine if the dump was taken off a virtual machine by 
comparing against some virtual BIOSes

• Let me know what you find! :)
– A volatility plugin to carve BIOS out of memdumps would be cool ☺

• IIRC someone might have done this now, but I can’t find the link again…
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• Let’s look at some of the 
decoding (routing) of the BIOS 
to memory

• Open RW Everything and click 
on the PCI tab to open up the 
PCI window

• Click the drop-down tab and 
select Bus 00, Device 1F, 
Function 00

• This is the LPC device
• Click on the Word 16 bit button 

to arrange the PCI configuration 
registers into 16-bit words

• Notice word offset D8-D9h
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• Offset D8-D9h is FWH_DEC_EN1

• As stated, this controls the 
decoding of ranges to the FWH

• If your system uses SPI and not a 
Firmware Hub (and it does since 
FWH is very rare), it still decodes 
to the SPI BIOS

• We want bit 14 which decodes 
FFF0_0000h – FFF7_FFFFh
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Note: “FWH” is substituted with “BIOS” in the 
above in the newer datasheets

Mini-Lab: BIOS Flash Decoding



Mini-Lab: BIOS Flash Decoding

• Therefore, with FWH_DEC_EN 
bit 14 asserted, we’re decoding 
to a portion of BIOS binary

• Click Memory button and 
type address FFF00000
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• De-assert bit 14 (set to 
0xBFCC)

• Decoded to memory now

• This memory range is still read-only
• This example is to help provide a picture 

of the initial boot environment
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• Reset it back to 0xFFCC
• Couple of notes:
• Your original values may differ 

since BIOS flips them on and 
off as the developers decided 
necessary

• Bit 15 is Read Only and always 
asserted
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Mini-data-collection Lab:
Reset Vector in BIOS Binary

• If we dump the BIOS and look at it in a hex editor, at the end 
of the file we will see a jump instruction (near, relative jump)

• The chipset aligns the flash so that the limit of the BIOS 
region (always either the only/last region on the flash) aligns 
with address FFFF_FFF0h

• The CPU executes these instructions in 16-bit Real Mode
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Real Mode Memory

• 16-bit operating mode
• Segmented memory model
• When operating in real-address mode, the default 

addressing and operand size is 16 bits
• An address-size override can be used in real-address 

mode to enable access to 32-bit addressing (like the 
extended general-purpose registers EAX, EDX, etc.) 

• However, the maximum allowable 32-bit linear address is 
still 000F_FFFFH (220 -1)

• So how can it address FFFF_FFF0h?
– We’ll answer that in a bit
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Real Mode Addressing: Segment Registers

• CS, DS, SS, ES, FS, GS
• Only six segments can be active at any one time
• 16-bit segment selector contains a pointer to a memory segment of 

64 Kbytes (max)
• 16-bit Effective address can access up to 64KB of memory address 

space
• Segment Selector combines with effective address to provide a 

20-bit linear address
• So an application running in real mode can access an address 

space of up to 384 KB at a time (including stack segment) without 
switching segments
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Real Mode Addressing

Intel  Developers Manual, 20.1.1

• As shown in Figure 
20-1 in the Intel SW 
Developers guide

• The Segment Selector 
(CS, DS, SS, etc.) is 
left-shifted 4 bits

• The 16-bit Segment 
Selector is then added 
to a 16-bit effective 
address (or offset if you 
will) within the segment

• Remember, upon entry 
into the BIOS, all linear 
addresses are 
translated as physical 
(per CR0)
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Real Mode Addressing Problem: Overlap

Intel  Developers Manual, 20.1.1

• Addresses in different 
segments can overlap

• Given such a limited 
environment it’s no 
wonder we want to 
choose a different 
operating mode as soon 
as possible
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F:FFF0 != FFFF:FFF0

• Every segment register has a “visible” part and a 
“hidden” part. 

• Intel sometimes refers to the “hidden part” as the 
“descriptor cache”

• It’s called “cache” because it stores the descriptor 
info so that the processor doesn’t have to resolve it 
each time a memory address is accessed



Descriptor Cache

• “When a segment selector is loaded into the visible part of a 
segment register, the processor also loads the hidden part of 
the segment register with the base address, segment limit, 
and [access information] from the segment descriptor pointed 
to by the segment selector.”

• Real Mode doesn’t have protected mode style access-control 
so the [access information] part is ignored

• This means that the hidden part isn’t modified until after a 
value is loaded into the segment selector

• So the moment CS is modified, the CS.BASE of 
FFFF_0000H is replaced with the new value of CS (left 
shifted 4 bits)

Intel SW Dev, Vol 3, Sec 3.4.3 21



CS.BASE + EIP

• CS.BASE is pre-set to 
FFFF_0000H upon CPU 
reset/power-up

• EIP set to 0000_FFF0H
• So even though CS is set to 

F000H, CS.BASE+EIP 
makes FFFF_FFF0H

• So when you see references 
to CS:IP upon power-up 
being equal to F:FFF0h, 
respectively, now you know 
how what it really means 
and how it equates to an 
entry vector at FFFF_FFF0h

Vol. 3, Figure 9-3 22



Reset Vector
• So upon startup, while the processor stays in Real 

Mode, it can access only the memory range 
FFFF_0000h to FFFF_FFFFh.

• If BIOS were to modify CS while still in Real Mode, the 
processor would only be able to address 0_0000h to 
F_FFFFh. 
– PAM0 helps out by mapping this range to high 

memory (another decoder)
• So therefore if your BIOS is large enough that it is 

mapped below FFFF_0000H and you want to access 
that part of it, you best get yourself into Protected 
Mode ASAP. 
– And this is typically what they do
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Analyzing any x86 BIOS Binary

• With UEFI we can usually 
skip straight to analyzing 
code we care about.

• But what if you want to 
analyze a legacy BIOS, or 
some other non-UEFI x86 
BIOS like CoreBoot?

• In that case you may need to 
do as the computer does, and 
really read starting from the 
first instruction

• The subsequent slides 
provide the generic process 
to do that
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A dream deferred

• We’re going to hold off on the rest of the entry 
vector analysis for now, and go back to it later 
if we have time.
– We never have time ;)

• I left the slides in here for if you want to try to 
go through an equivalent process
– Note: I know the slides are a little hard to follow 

and occasionally make jumps in intuition. I’ve 
been wanting to clean these up from John’s 
version, but haven’t had time
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1: Disassemble the BIOS Binary
• Acquire a dump of the BIOS 

flash from a tool like Flashrom or 
Copernicus and open it in IDA

• Intel 80x86 metapc setting is fine 
regardless of IDA version

• Choose to disassemble in 32-bit 
mode

• Not a typo, most BIOS’ jump into 
32-bit protected mode as soon 
as possible
– If your BIOS is much older, just 

edit the segment to 16-bit
• I have the full version of IDA Pro 

but am using Free version 5.0 to 
show you that this works with 
that version

• Other debuggers like OllyDbg 
should also work
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FIXME

• Update procedure for new IDA demo 6.6
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2: Rebase the Program

• First thing we’re going to 
do is rebase the program 

• We know the entire image 
of this BIOS is mapped to 
memory so that its upper 
address boundary is at  
FFFF_FFFFh with the 
entry vector at 
FFFF_FFF0h

• Let’s touch these up to 
reflect this
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2.1: Rebase the Program
• In this lab our file contains 

only the BIOS portion of the 
flash.

• The value to enter is:
• 4 GB – (Size of BIOS Binary)
• For this lab it is 0xFFE60000

– (for BIOS Length 1A0000h)
• Example: If you had a 2 MB 

BIOS binary you would 
rebase the program to 
FFE0_0000h

• The idea is for the entry 
vector at FFFF_FFF0h in 
memory to be displayed in 
IDA at linear address 
FFFF_FFF0h• If you encounter a size-related error, open the binary 

file with a hex editor (like HxD) and delete the last 
byte.  Then re-open the binary in IDA and rebase it. 
Still treat it like it were its original size.

!
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2.2: Rebase the Program

• You know you have done it 
right when you see 
executable instructions at 
FFFF_FFF0h, such as:

• E9 3D FE
• E9 is a relative JMP 

instruction (JMP FE3Dh)
• Note: The JMP instruction 

may be preceded by a 
WBINVD instruction or a 
couple NOP instructions
– In this case, these instructions 

will be at FFFF_FFF0h 
instead of the JMP

• There always will be a JMP 
here following those
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3. Determine IDA Segments: 
Manually Analyze the Reset Vector JMP

• So now we want to create 
some IDA segments to help 
us (and IDA) interpret the 
disassembly

• One goal is to keep the 
16-bit segment that 
contains the entry vector as 
small as possible
– From experience, BIOS takes 

a FAR JMP away from here 
after entering protected mode

• JMP FE3Dh is relative to 
the address following the 
JMP:

• FFFF_FFF3h, in this case
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3.1: JMP rel16

• The address following our JMP instruction is FFFF_FFF3h 
– We’ll treat it like a 64KB segment (FFF3h) for easier readability
– Technically it is a 64KB segment so we don’t have to worry about this 

assumption throwing off our calculation
• Take the 2’s compliment of the operand in the JMP FE3Dh instruction:

1. (FE3Dh – 1) = FE3Ch
2. ~FE3Ch = 01C3h

• Subtract this displacement from the address following the JMP 
instruction to find the destination:

• FFF3h – 01C3h = FE30h

Intel SW Developers Guide, Vol. 2, Intel Instruction Set Reference 32



3.2: Determine Segment Boundary
• So we know the destination of 

the JMP at the entry vector is 
FFFF_FE30h

• We can now make an 
assumption that the address 
FFFF_FE00h can serve as a 
segment boundary for us

• Our goal is to keep the 
segment containing the entry 
JMP as small as possible

• The assumption is that code 
will be aligned and will take a 
far JMP to a lower address 
space

• This assumption is based on 
experience, but could vary

• Remember these are 
segments to help IDA 
translate our disassembly, 
not necessarily mimic the 
system
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4: Create Initial 16-bit Segment
• Edit –> Segments –> Create 

Segment
• Pick any segment name you want
• Class can be any text name
• 16-bit segment
• Start Address = 0xFFFFFE00
• End Address  = 0xFFFFFFFE

– Remember: IDA Does not like the 
address FFFFFFFF (-1) !!

– Actually, according to IDA 
documentation, the 32-bit version of 
IDA doesn’t “like” any address at or 
above FF00_0000h ☹

• Base = 0x0FFFF000
– CS.BASE = FFFF_0000h on boot

VirtualAddress = LinearAddress - (Base << 4)
          FFF0       FFFF:FFF0 – (Base << 4)
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5: Identify Memory Model
• Once this segment is 

created, IDA 
“automagically” 
recognizes the destination 
of the entry vector jump

• What we see here is the 
BIOS preparing to enter 
protected mode

• Likely it will be using a flat 
memory model 

• Note the ‘8’ in the far jump 
operand

• That references the entry 
at offset 8 in the GDT 

• Now let’s look at that 
LGDT instruction
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5.1: LGDT Instruction

• LGDT loads the values in the source operand into the global descriptor 
table register (GDTR)

• The operand specifies a 6-byte structure containing the size of the 
table (2-bytes) and a 4-byte pointer to the location of the table data

• The table data contains segment bases, limits, access rights
• More than likely it will be a single base of 0000_0000h and a limit of 

FFFF_FFFFh
• If this is true, then they are using a Flat Memory Model

– And you shall rejoice!
– Really there is no point in not using the flat memory model, you can 

generally just assume they are

All of the following GDT information is also covered in Intermediate x86
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5.2: Import GDT/IDT Structures
• You can import these 

structures into IDA by 
parsing the file 
“descriptors.h” 

• Screenshot included so 
you can enter them 
manually if necessary

• IDT structures are also 
provided

• Importing structures like 
this is very useful for 
analyzing BIOS

• Legacy BIOS is filled with 
proprietary structure 
definitions

• Contrasted with UEFI 
structures which are 
defined in a 
publically-released 
standardhttp://www.jamesmolloy.co.uk/tutorial_html/4.-The%20GDT%20and%20IDT.html 37



5.3: Define GdtPtr

• Go to the address referenced by the operand to the LGDT instruction
• IDA will have already tried to interpret this and failed, undefine that
• Now define it as structure of type GdtPtr
• As per the structure definition, the first member is the size of the GDT 

table and the second is a pointer to the location of the GDT entries
• That pointer won’t translate properly for us, but we can tell where the 

entries are defined just by looking at the value
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5.4: Define GDT Entries
• We know it’s location is in 

our 16-bit segment 
• Manually go there by 

jumping to seg:FF00
• This is where the GDT 

entries are defined
• Look at the structure 

definition in peewee.h to 
interpret

• The table size is 0x78 bytes, 
but we only want the second 
entry into the table at offset 
8:

• BASE = 0000_0000h
• LIMIT = FFFF_FFFFh
• This is the flat memory 

model
• These descriptors will be 

used by the subsequent 
code so you can fill out the 
rest as needed

*There may be a superior way to set up our segments so that it all “just works” 
but I have not found it yet. Also, disregard the different segment names. 39



5.5: Full GDT

• The GdtEntry structure 
definition in peewee.h can 
be used to interpret the 
GDT entries

• Each structure is 8 bytes in 
size

• The FAR JMP is referencing 
the second entry (offset 8)

• Base 0, Limit FFFF_FFFFh
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5.5: Full GDT

• Here is the entire GDT for reference. You don’t need an expensive 
debugger to analyze BIOS (but it does save a lot of time)
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6: Create the 32-bit BIOS segment

• Now create the 32-bit segment
• Start address is FFFF_FFFFh - <size of 

the BIOS region> + 1
– FFFF_FFFFh – 1A_0000h in this example
– SPI regions will be explained more during BIOS 

flash portion of the course

• End Address is our segment boundary 
Address
– FFFF_FE00h in this example

• Base Address matches that of the GDT 
table, entry 8 (0000_0000h)

Copernicus_Log.txt
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7: Touch up the Far Jump
• So we know that this is 

loading the descriptor 
entry at offset 8 in the 
GDT

• We can visually inspect 
the operand of this JMP to 
see that it’s going to  
FFFF_0100h

• We can manually fix this 
operand

• Right click the operand 
and select ‘Manual’

• Change it to:
• bios:FFFF0100h
• Uncheck ‘Check Operand’
• A little ugly 
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Welcome to BIOS Analysis

• Converting the binary at 
FFFF_0100h to code provides you 
the entry point to the real BIOS 
initialization

• Up until this point everything we 
covered is pretty standard across 
many BIOSes
– This applies to UEFI BIOS too
– Even really old BIOS will basically 

follow the path we took, perhaps 
staying in real mode longer though

• From here on though, if legacy, it’s 
completely proprietary to the OEM 
(data structures, etc.)

• By contrast, UEFI is standardized 
from head to toe
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Why so Ugly? IDA Segments

• IDA can’t combine 16-bit and 
32-bit instructions in the same 
segment

• We could have created another 
32-bit segment to account for 
the processor entering 32-bit 
protected mode

• But then we’d have to create 4 
segments

• Not really necessary since we 
can visually inspect it and 
determine what’s going on 

• Fudging it is okay since the 
important stuff happens after 
all this

32-bit

16-bit

16-bit

FFFF_FFF0h

FFFF_FE30h

FFFF_FE48h

FFFF_FE51h

32-bit

.

.

.

.

.

.

FFFF_0100h
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BIOS Reset Vector Analysis: Short Cut 1

• You can likely skip a few of the 
steps and make some 
assumptions to get to the 
initialization code faster:

• Open your BIOS binary file in IDA 
same as before

• Rebase the program, same as 
before

• Don’t bother analyzing the entry 
vector JMP, just create a 16-bit 
segment the exact same as 
before, except:
– Start Address: 0xFFFFFFF0
– We can count on IDA being smart 

enough to interpret this properly 
even though it makes our 
segment a little odd
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BIOS Reset Vector Analysis: Short Cut 2
• Follow the entry JMP

– Notice that IDA 
automagically modified 
our segment so it begins 
at seg:FE30

• Manually touch up the FAR 
JMP same as before

• We could optionally create 
a 32-bit segment here just 
to ensure it has a base of 
0h 
– Assume a flat memory 

model
• Now we can go to the real 

BIOS initialization code 
entry, just like before!

• This shortcut doesn’t 
always work 
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Lab: Scratch the surface

• Repeat the process we just did for the E6400 
BIOS on each of your BIOS dumps

• We'll see if there are any where it leads to 
early confusion
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