
Advanced x86:
BIOS and System Management Mode Internals

Reset Vector

Xeno Kovah && Corey Kallenberg

LegbaCore, LLC

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah’s ’Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html”

Reset Vector
Execution Environment

Real-Address Mode (Real Mode)

• The original x86 operating mode
• Referred to as “Real Mode” for short
• Introduced way back in 8086/8088 processors
• Was the only operating mode until Protected Mode (with

its "virtual addresses") was introduced in the Intel 286
• Exists today solely for compatibility so that code written

for 8086 will still run on a modern processor
– Someday processors will boot into protected mode instead

• In the BIOS’ I have looked at, the general theme seems
to be to get out of Real Mode as fast as possible

• Therefore we won’t stay here long either

4

Processor State After Reset

• EAX, EBX, ECX, EBP, ESI, EDI, ESP are
all reset to 0

• EDX contains the CPU stepping
identification information
– Same info returned in EAX when CPUID is

called with EAX initialized to ‘1’
– *This will vary of course, the value in the table

to the left corresponds to the Core2Duo inside
the E6400

• The base registers are 0 with the exception
of CS which is initialized with F000

• EIP (or IP since it’s 16-bit mode) is
initialized with (0000)FFF0
– CS:IP = F:FFF0h

• EFLAGS is 00000002h
– Only hard-coded bit 1 is asserted
– If I were sitting at a breakpoint at the entry

vector, then bit 16 (resume flag) would be
asserted indicating that debug exceptions
(#DB) are disabled.

Name Value

EAX 00000000

EBX 00000000

ECX 00000000

EDX 00010676*

EBP 00000000

ESI 00000000

EDI 00000000

ESP 00000000

CS F000

DS 0000

SS 0000

ES 0000

FS 0000

GS 0000

EIP 0000FFF0

EFLAGS 00000002

E6400 Registers at Reset

5

• Control registers CR2, CR3, and CR4 are all 0
• CR0 is 6000_0010h (likely since Pentium)
• Paging (bit 31) is disabled

– All linear addresses are treated as physical addresses
• Protection Enable (bit 0) is 0

– 0 indicates that we are in Real Mode
– 1 indicates we are in Protected Mode

• All the other bits are 0

Most notable bits are high-lighted

6

Processor State After Reset:
Control Registers (CRs)

Reset Vector

System Memory

BIOS Flash Chip

0 4GB

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

0x
FF
FF
FF
F0

LPC I/F

• At system reset, the an initial
(“bootstrap”) processor begins
execution at the reset vector

• The reset vector is always
located on flash at "memory"
address FFFF_FFF0h
– The whole chip is mapped to

memory but not all of it is readable
due to protections on the flash
device itself

7

Reset Vector Decoding

System Memory

BIOS Flash Chip

0 4GB

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

0x
FF
FF
FF
F0

LPC I/F

• Decoding (routing) is performed
via decoders located in the
chipset

• As far as the CPU is concerned
it is fetching instructions from
memory

• But in fact it’s from the SPI flash
8

Aside: Forensics People

• If the top of memory always contains a memory-mapped copy of
part of the SPI flash chip, that means it should theoretically show
up in memory forensic dumps (e.g. those given out by memory
forensic challenges)

• I’ve never had time to test this, but you should see if you can go
grab some memory forensics dumps and determine whether there
is a complete copy of the BIOS in the memory dump, or only a
partial copy (and if partial, where it ends)
– Probably should start by testing on a system you have known BIOS

dump for
– As I mentioned before, virtual machines have virtual BIOSes, so you

could also determine if the dump was taken off a virtual machine by
comparing against some virtual BIOSes

• Let me know what you find! :)
– A volatility plugin to carve BIOS out of memdumps would be cool ☺

• IIRC someone might have done this now, but I can’t find the link again…

9

• Let’s look at some of the
decoding (routing) of the BIOS
to memory

• Open RW Everything and click
on the PCI tab to open up the
PCI window

• Click the drop-down tab and
select Bus 00, Device 1F,
Function 00

• This is the LPC device
• Click on the Word 16 bit button

to arrange the PCI configuration
registers into 16-bit words

• Notice word offset D8-D9h

10

Mini-Lab: BIOS Flash Decoding

• Offset D8-D9h is FWH_DEC_EN1

• As stated, this controls the
decoding of ranges to the FWH

• If your system uses SPI and not a
Firmware Hub (and it does since
FWH is very rare), it still decodes
to the SPI BIOS

• We want bit 14 which decodes
FFF0_0000h – FFF7_FFFFh

11

Note: “FWH” is substituted with “BIOS” in the
above in the newer datasheets

Mini-Lab: BIOS Flash Decoding

Mini-Lab: BIOS Flash Decoding

• Therefore, with FWH_DEC_EN
bit 14 asserted, we’re decoding
to a portion of BIOS binary

• Click Memory button and
type address FFF00000

12

• De-assert bit 14 (set to
0xBFCC)

• Decoded to memory now

• This memory range is still read-only
• This example is to help provide a picture

of the initial boot environment

13

Mini-Lab: BIOS Flash Decoding

• Reset it back to 0xFFCC
• Couple of notes:
• Your original values may differ

since BIOS flips them on and
off as the developers decided
necessary

• Bit 15 is Read Only and always
asserted

14

Mini-Lab: BIOS Flash Decoding

Mini-data-collection Lab:
Reset Vector in BIOS Binary

• If we dump the BIOS and look at it in a hex editor, at the end
of the file we will see a jump instruction (near, relative jump)

• The chipset aligns the flash so that the limit of the BIOS
region (always either the only/last region on the flash) aligns
with address FFFF_FFF0h

• The CPU executes these instructions in 16-bit Real Mode
15

Real Mode Memory

• 16-bit operating mode
• Segmented memory model
• When operating in real-address mode, the default

addressing and operand size is 16 bits
• An address-size override can be used in real-address

mode to enable access to 32-bit addressing (like the
extended general-purpose registers EAX, EDX, etc.)

• However, the maximum allowable 32-bit linear address is
still 000F_FFFFH (220 -1)

• So how can it address FFFF_FFF0h?
– We’ll answer that in a bit

16

Real Mode Addressing: Segment Registers

• CS, DS, SS, ES, FS, GS
• Only six segments can be active at any one time
• 16-bit segment selector contains a pointer to a memory segment of

64 Kbytes (max)
• 16-bit Effective address can access up to 64KB of memory address

space
• Segment Selector combines with effective address to provide a

20-bit linear address
• So an application running in real mode can access an address

space of up to 384 KB at a time (including stack segment) without
switching segments

17

Real Mode Addressing

Intel Developers Manual, 20.1.1

• As shown in Figure
20-1 in the Intel SW
Developers guide

• The Segment Selector
(CS, DS, SS, etc.) is
left-shifted 4 bits

• The 16-bit Segment
Selector is then added
to a 16-bit effective
address (or offset if you
will) within the segment

• Remember, upon entry
into the BIOS, all linear
addresses are
translated as physical
(per CR0)

18

Real Mode Addressing Problem: Overlap

Intel Developers Manual, 20.1.1

• Addresses in different
segments can overlap

• Given such a limited
environment it’s no
wonder we want to
choose a different
operating mode as soon
as possible

19

20

F:FFF0 != FFFF:FFF0

• Every segment register has a “visible” part and a
“hidden” part.

• Intel sometimes refers to the “hidden part” as the
“descriptor cache”

• It’s called “cache” because it stores the descriptor
info so that the processor doesn’t have to resolve it
each time a memory address is accessed

Descriptor Cache

• “When a segment selector is loaded into the visible part of a
segment register, the processor also loads the hidden part of
the segment register with the base address, segment limit,
and [access information] from the segment descriptor pointed
to by the segment selector.”

• Real Mode doesn’t have protected mode style access-control
so the [access information] part is ignored

• This means that the hidden part isn’t modified until after a
value is loaded into the segment selector

• So the moment CS is modified, the CS.BASE of
FFFF_0000H is replaced with the new value of CS (left
shifted 4 bits)

Intel SW Dev, Vol 3, Sec 3.4.3 21

CS.BASE + EIP

• CS.BASE is pre-set to
FFFF_0000H upon CPU
reset/power-up

• EIP set to 0000_FFF0H
• So even though CS is set to

F000H, CS.BASE+EIP
makes FFFF_FFF0H

• So when you see references
to CS:IP upon power-up
being equal to F:FFF0h,
respectively, now you know
how what it really means
and how it equates to an
entry vector at FFFF_FFF0h

Vol. 3, Figure 9-3 22

Reset Vector
• So upon startup, while the processor stays in Real

Mode, it can access only the memory range
FFFF_0000h to FFFF_FFFFh.

• If BIOS were to modify CS while still in Real Mode, the
processor would only be able to address 0_0000h to
F_FFFFh.
– PAM0 helps out by mapping this range to high

memory (another decoder)
• So therefore if your BIOS is large enough that it is

mapped below FFFF_0000H and you want to access
that part of it, you best get yourself into Protected
Mode ASAP.
– And this is typically what they do

23

Analyzing any x86 BIOS Binary

• With UEFI we can usually
skip straight to analyzing
code we care about.

• But what if you want to
analyze a legacy BIOS, or
some other non-UEFI x86
BIOS like CoreBoot?

• In that case you may need to
do as the computer does, and
really read starting from the
first instruction

• The subsequent slides
provide the generic process
to do that

24

A dream deferred

• We’re going to hold off on the rest of the entry
vector analysis for now, and go back to it later
if we have time.
– We never have time ;)

• I left the slides in here for if you want to try to
go through an equivalent process
– Note: I know the slides are a little hard to follow

and occasionally make jumps in intuition. I’ve
been wanting to clean these up from John’s
version, but haven’t had time

25

1: Disassemble the BIOS Binary
• Acquire a dump of the BIOS

flash from a tool like Flashrom or
Copernicus and open it in IDA

• Intel 80x86 metapc setting is fine
regardless of IDA version

• Choose to disassemble in 32-bit
mode

• Not a typo, most BIOS’ jump into
32-bit protected mode as soon
as possible
– If your BIOS is much older, just

edit the segment to 16-bit
• I have the full version of IDA Pro

but am using Free version 5.0 to
show you that this works with
that version

• Other debuggers like OllyDbg
should also work

26

FIXME

• Update procedure for new IDA demo 6.6

27

2: Rebase the Program

• First thing we’re going to
do is rebase the program

• We know the entire image
of this BIOS is mapped to
memory so that its upper
address boundary is at
FFFF_FFFFh with the
entry vector at
FFFF_FFF0h

• Let’s touch these up to
reflect this

28

2.1: Rebase the Program
• In this lab our file contains

only the BIOS portion of the
flash.

• The value to enter is:
• 4 GB – (Size of BIOS Binary)
• For this lab it is 0xFFE60000

– (for BIOS Length 1A0000h)
• Example: If you had a 2 MB

BIOS binary you would
rebase the program to
FFE0_0000h

• The idea is for the entry
vector at FFFF_FFF0h in
memory to be displayed in
IDA at linear address
FFFF_FFF0h• If you encounter a size-related error, open the binary

file with a hex editor (like HxD) and delete the last
byte. Then re-open the binary in IDA and rebase it.
Still treat it like it were its original size.

!
29

2.2: Rebase the Program

• You know you have done it
right when you see
executable instructions at
FFFF_FFF0h, such as:

• E9 3D FE
• E9 is a relative JMP

instruction (JMP FE3Dh)
• Note: The JMP instruction

may be preceded by a
WBINVD instruction or a
couple NOP instructions
– In this case, these instructions

will be at FFFF_FFF0h
instead of the JMP

• There always will be a JMP
here following those

30

3. Determine IDA Segments:
Manually Analyze the Reset Vector JMP

• So now we want to create
some IDA segments to help
us (and IDA) interpret the
disassembly

• One goal is to keep the
16-bit segment that
contains the entry vector as
small as possible
– From experience, BIOS takes

a FAR JMP away from here
after entering protected mode

• JMP FE3Dh is relative to
the address following the
JMP:

• FFFF_FFF3h, in this case

31

3.1: JMP rel16

• The address following our JMP instruction is FFFF_FFF3h
– We’ll treat it like a 64KB segment (FFF3h) for easier readability
– Technically it is a 64KB segment so we don’t have to worry about this

assumption throwing off our calculation
• Take the 2’s compliment of the operand in the JMP FE3Dh instruction:

1. (FE3Dh – 1) = FE3Ch
2. ~FE3Ch = 01C3h

• Subtract this displacement from the address following the JMP
instruction to find the destination:

• FFF3h – 01C3h = FE30h

Intel SW Developers Guide, Vol. 2, Intel Instruction Set Reference 32

3.2: Determine Segment Boundary
• So we know the destination of

the JMP at the entry vector is
FFFF_FE30h

• We can now make an
assumption that the address
FFFF_FE00h can serve as a
segment boundary for us

• Our goal is to keep the
segment containing the entry
JMP as small as possible

• The assumption is that code
will be aligned and will take a
far JMP to a lower address
space

• This assumption is based on
experience, but could vary

• Remember these are
segments to help IDA
translate our disassembly,
not necessarily mimic the
system

33

4: Create Initial 16-bit Segment
• Edit –> Segments –> Create

Segment
• Pick any segment name you want
• Class can be any text name
• 16-bit segment
• Start Address = 0xFFFFFE00
• End Address = 0xFFFFFFFE

– Remember: IDA Does not like the
address FFFFFFFF (-1) !!

– Actually, according to IDA
documentation, the 32-bit version of
IDA doesn’t “like” any address at or
above FF00_0000h ☹

• Base = 0x0FFFF000
– CS.BASE = FFFF_0000h on boot

VirtualAddress = LinearAddress - (Base << 4)
 FFF0 FFFF:FFF0 – (Base << 4)

34

5: Identify Memory Model
• Once this segment is

created, IDA
“automagically”
recognizes the destination
of the entry vector jump

• What we see here is the
BIOS preparing to enter
protected mode

• Likely it will be using a flat
memory model

• Note the ‘8’ in the far jump
operand

• That references the entry
at offset 8 in the GDT

• Now let’s look at that
LGDT instruction

35

5.1: LGDT Instruction

• LGDT loads the values in the source operand into the global descriptor
table register (GDTR)

• The operand specifies a 6-byte structure containing the size of the
table (2-bytes) and a 4-byte pointer to the location of the table data

• The table data contains segment bases, limits, access rights
• More than likely it will be a single base of 0000_0000h and a limit of

FFFF_FFFFh
• If this is true, then they are using a Flat Memory Model

– And you shall rejoice!
– Really there is no point in not using the flat memory model, you can

generally just assume they are

All of the following GDT information is also covered in Intermediate x86

36

5.2: Import GDT/IDT Structures
• You can import these

structures into IDA by
parsing the file
“descriptors.h”

• Screenshot included so
you can enter them
manually if necessary

• IDT structures are also
provided

• Importing structures like
this is very useful for
analyzing BIOS

• Legacy BIOS is filled with
proprietary structure
definitions

• Contrasted with UEFI
structures which are
defined in a
publically-released
standardhttp://www.jamesmolloy.co.uk/tutorial_html/4.-The%20GDT%20and%20IDT.html 37

5.3: Define GdtPtr

• Go to the address referenced by the operand to the LGDT instruction
• IDA will have already tried to interpret this and failed, undefine that
• Now define it as structure of type GdtPtr
• As per the structure definition, the first member is the size of the GDT

table and the second is a pointer to the location of the GDT entries
• That pointer won’t translate properly for us, but we can tell where the

entries are defined just by looking at the value
38

5.4: Define GDT Entries
• We know it’s location is in

our 16-bit segment
• Manually go there by

jumping to seg:FF00
• This is where the GDT

entries are defined
• Look at the structure

definition in peewee.h to
interpret

• The table size is 0x78 bytes,
but we only want the second
entry into the table at offset
8:

• BASE = 0000_0000h
• LIMIT = FFFF_FFFFh
• This is the flat memory

model
• These descriptors will be

used by the subsequent
code so you can fill out the
rest as needed

*There may be a superior way to set up our segments so that it all “just works”
but I have not found it yet. Also, disregard the different segment names. 39

5.5: Full GDT

• The GdtEntry structure
definition in peewee.h can
be used to interpret the
GDT entries

• Each structure is 8 bytes in
size

• The FAR JMP is referencing
the second entry (offset 8)

• Base 0, Limit FFFF_FFFFh

40

5.5: Full GDT

• Here is the entire GDT for reference. You don’t need an expensive
debugger to analyze BIOS (but it does save a lot of time)

41

6: Create the 32-bit BIOS segment

• Now create the 32-bit segment
• Start address is FFFF_FFFFh - <size of

the BIOS region> + 1
– FFFF_FFFFh – 1A_0000h in this example
– SPI regions will be explained more during BIOS

flash portion of the course

• End Address is our segment boundary
Address
– FFFF_FE00h in this example

• Base Address matches that of the GDT
table, entry 8 (0000_0000h)

Copernicus_Log.txt

42

7: Touch up the Far Jump
• So we know that this is

loading the descriptor
entry at offset 8 in the
GDT

• We can visually inspect
the operand of this JMP to
see that it’s going to
FFFF_0100h

• We can manually fix this
operand

• Right click the operand
and select ‘Manual’

• Change it to:
• bios:FFFF0100h
• Uncheck ‘Check Operand’
• A little ugly

43

Welcome to BIOS Analysis

• Converting the binary at
FFFF_0100h to code provides you
the entry point to the real BIOS
initialization

• Up until this point everything we
covered is pretty standard across
many BIOSes
– This applies to UEFI BIOS too
– Even really old BIOS will basically

follow the path we took, perhaps
staying in real mode longer though

• From here on though, if legacy, it’s
completely proprietary to the OEM
(data structures, etc.)

• By contrast, UEFI is standardized
from head to toe

44

Why so Ugly? IDA Segments

• IDA can’t combine 16-bit and
32-bit instructions in the same
segment

• We could have created another
32-bit segment to account for
the processor entering 32-bit
protected mode

• But then we’d have to create 4
segments

• Not really necessary since we
can visually inspect it and
determine what’s going on

• Fudging it is okay since the
important stuff happens after
all this

32-bit

16-bit

16-bit

FFFF_FFF0h

FFFF_FE30h

FFFF_FE48h

FFFF_FE51h

32-bit

.

.

.

.

.

.

FFFF_0100h

45

BIOS Reset Vector Analysis: Short Cut 1

• You can likely skip a few of the
steps and make some
assumptions to get to the
initialization code faster:

• Open your BIOS binary file in IDA
same as before

• Rebase the program, same as
before

• Don’t bother analyzing the entry
vector JMP, just create a 16-bit
segment the exact same as
before, except:
– Start Address: 0xFFFFFFF0
– We can count on IDA being smart

enough to interpret this properly
even though it makes our
segment a little odd

46

BIOS Reset Vector Analysis: Short Cut 2
• Follow the entry JMP

– Notice that IDA
automagically modified
our segment so it begins
at seg:FE30

• Manually touch up the FAR
JMP same as before

• We could optionally create
a 32-bit segment here just
to ensure it has a base of
0h
– Assume a flat memory

model
• Now we can go to the real

BIOS initialization code
entry, just like before!

• This shortcut doesn’t
always work

47

Lab: Scratch the surface

• Repeat the process we just did for the E6400
BIOS on each of your BIOS dumps

• We'll see if there are any where it leads to
early confusion

48

