
Programming Logic and Design
Seventh Edition

Chapter 2

Elements of High-Quality Programs



Objectives

In this chapter, you will learn about:

• Declaring and using variables and constants

• Performing arithmetic operations

• The advantages of modularization

• Modularizing a program

• Hierarchy charts

• Features of good program design

2Programming Logic and Design, Seventh Edition



Declaring and Using Variables
and Constants

• Data types
– Numeric consists of numbers

– String is anything not used in math

• Different forms
– Integers and floating-point numbers

– Literal and string constants

– Unnamed constants

3
Programming Logic and Design, Seventh Edition



Working with Variables

• Named memory locations 

• Contents can vary or differ over time

• Declaration 
– Statement that provides a data type and an identifier for a 

variable

• Identifier
– Variable’s name

4
Programming Logic and Design, Seventh Edition



Working with Variables (continued)

Figure 2-1 Flowchart and pseudocode for the number-doubling program

5
Programming Logic and Design, Seventh Edition



Working with Variables (continued)

• Data type 
– Classification that describes: 

• What values can be held by the item

• How the item is stored in computer memory

• What operations can be performed on the data item

• Initializing the variable
– Declare a starting value for any variable

• Garbage
– Variable’s unknown value before initialization

6
Programming Logic and Design, Seventh Edition



7
Programming Logic and Design, Seventh Edition

Figure 2-2 Flowchart and pseudocode of number-doubling 

program with variable declarations



Naming Variables

• Programmer chooses reasonable and descriptive 
names for variables

• Programming languages have rules for creating 
identifiers
– Most languages allow letters and digits

– Some languages allow hyphens

– Reserved keywords are not allowed

• Variable names are case sensitive

8
Programming Logic and Design, Seventh Edition



Naming Variables (continued)

• Camel casing
– Variable names such as hourlyWage have a “hump” in 

the middle

• Be descriptive
– Must be one word

– Must start with a letter

– Should have some appropriate meaning

9
Programming Logic and Design, Seventh Edition



Assigning Values to Variables

• Assignment statement
– set myAnswer = myNumber * 2

• Assignment operator
– Equal sign 

– Always operates from right to left
• Valid

– set someNumber = 2
– set someOtherNumber = someNumber

• Not valid 
– set 2 + 4 = someNumber

10
Programming Logic and Design, Seventh Edition



Understanding the Data Types of 
Variables

• Numeric variable 
– Holds digits 

– Can perform mathematical operations on it

• String variable 
– Can hold text

– Letters of the alphabet

– Special characters such as punctuation marks

• Type-safety 
– Prevents assigning values of an incorrect data type

11
Programming Logic and Design, Seventh Edition



Declaring Named Constants

• Named constant 
– Similar to a variable

– Can be assigned a value only once

– Assign a useful name to a value that will never be changed 
during a program’s execution

• Magic number 
– Unnamed constant

– Use taxAmount = price * SALES_TAX_AMOUNT 
instead of taxAmount = price * .06

12
Programming Logic and Design, Seventh Edition



Performing Arithmetic Operations

• Standard arithmetic operators:
+ (plus sign)—addition

− (minus sign)—subtraction

* (asterisk)—multiplication

/ (slash)—division

13
Programming Logic and Design, Seventh Edition



Performing Arithmetic Operations 
(continued)

• Rules of precedence
– Also called the order of operations

– Dictate the order in which operations in the same 
statement are carried out

– Expressions within parentheses are evaluated first

– Multiplication and division are evaluated next
• From left to right

– Addition and subtraction are evaluated next
• From left to right

14
Programming Logic and Design, Seventh Edition



Performing Arithmetic Operations 
(continued)

• Left-to-right associativity
– Operations with the same precedence take place from left 

to right

15
Programming Logic and Design, Seventh Edition



Performing Arithmetic Operations 
(continued)

Table 2-1 Precedence and associativity of five common operators

16
Programming Logic and Design, Seventh Edition



Understanding the Advantages
of Modularization

• Modules
– Subunit of programming problem

– Also called subroutines, procedures, functions, or 
methods

• Modularization
– Breaking down a large program into modules

– Reasons
• Abstraction

• Allows multiple programmers to work on a problem

• Reuse your work more easily

17
Programming Logic and Design, Seventh Edition



Modularization Provides 
Abstraction

• Abstraction 
– Paying attention to important properties while ignoring 

nonessential details

– Selective ignorance

• Newer high-level programming languages 
– Use English-like vocabulary 

– One broad statement corresponds to dozens of machine 
instructions

• Modules provide another way to achieve abstraction

18
Programming Logic and Design, Seventh Edition



Modularization Allows Multiple 
Programmers to Work on a Problem

• Easier to divide the task among various people

• Rarely does a single programmer write a commercial 
program
– Professional software developers can write new programs 

quickly by dividing large programs into modules

– Assign each module to an individual programmer or team

19
Programming Logic and Design, Seventh Edition



Modularization Allows You to 
Reuse Work

• Reusability
– Feature of modular programs

– Allows individual modules to be used in a variety of 
applications

– Many real-world examples of reusability

• Reliability
– Assures that a module has been tested and proven to 

function correctly

20
Programming Logic and Design, Seventh Edition



Modularizing a Program

• Main program
– Basic steps (mainline logic) of the program

• Include in a module
– Module header

– Module body

– Module return statement

• Naming a module 
– Similar to naming a variable

– Module names are followed by a set of parentheses

21
Programming Logic and Design, Seventh Edition



Modularizing a Program 
(continued)

• When a main program wants to use a module
– “Calls” the module’s name

• Flowchart 
– Symbol used to call a module is a rectangle with a bar 

across the top

– Place the name of the module you are calling inside the 
rectangle

– Draw each module separately with its own sentinel 
symbols

22
Programming Logic and Design, Seventh Edition



23
Programming Logic and Design, Seventh Edition

Figure 2-3 Program that produces a bill using only main program



Modularizing a Program 
(continued)

• Statements taken out of a main program and put into 
a module have been encapsulated

• Main program becomes shorter and easier to 
understand

• Modules are reusable

• When statements contribute to the same job, we get 
greater functional cohesion

24
Programming Logic and Design, Seventh Edition



25
Programming Logic and Design, Seventh Edition

Figure 2-5 The billing program with constants declared within the module



Declaring Variables and Constants
within Modules

• Place any statements within modules
– Input, processing, and output statements

– Variable and constant declarations

• Variables and constants declared in a module are 
usable only within the module
– Visible

– In scope, also called local 

• Portable
– Self-contained units that are easily transported

26
Programming Logic and Design, Seventh Edition



Declaring Variables and Constants
within Modules (continued)

• Global variables and constants 
– Declared at the program level

– Visible to and usable in all the modules called by the 
program

– Many programmers avoid global variables to minimize 
errors

27
Programming Logic and Design, Seventh Edition



Understanding the Most Common
Configuration for Mainline Logic

• Mainline logic of almost every procedural computer 
program follows a general structure
– Declarations for global variables and constants

– Housekeeping tasks

– Detail loop tasks

– End-of-job tasks

28
Programming Logic and Design, Seventh Edition



Understanding the Most Common
Configuration for Mainline Logic (cont’d)

Figure 2-6 Flowchart and pseudocode of

mainline logic for a typical procedural program

29
Programming Logic and Design, Seventh Edition



Creating Hierarchy Charts

• Hierarchy chart 
– Shows the overall picture of how modules are related to 

one another

– Tells you which modules exist within a program and which 
modules call others

– Specific module may be called from several locations 
within a program

• Planning tool 
– Develop the overall relationship of program modules 

before you write them 

• Documentation tool
30

Programming Logic and Design, Seventh Edition



Features of Good Program Design

• Use program comments where appropriate

• Identifiers should be chosen carefully

• Strive to design clear statements within your 
programs and modules

• Write clear prompts and echo input

• Continue to maintain good programming habits as 
you develop your programming skills

31
Programming Logic and Design, Seventh Edition



Using Program Comments

• Program comments 
– Written explanations of programming statements

– Not part of the program logic 

– Serve as documentation for readers of the program

• Syntax used differs among programming languages

• Flowchart
– Use an annotation symbol to hold information that 

expands on what is stored within another flowchart 
symbol

32
Programming Logic and Design, Seventh Edition



Using Program Comments 
(continued)

33
Programming Logic and Design, Seventh Edition

Figure 2-12 Pseudocode that declares some variables and includes comments



34
Programming Logic and Design, Seventh Edition

Figure 2-13 Flowchart that includes annotation symbols



Choosing Identifiers

• General guidelines
– Give a variable or a constant a name that is a noun 

(because it represents a thing)

– Give a module an identifier that is a verb (because it 
performs an action)

– Use meaningful names
• Self-documenting

– Use pronounceable names

– Be judicious in your use of abbreviations

– Avoid digits in a name

35
Programming Logic and Design, Seventh Edition



Choosing Identifiers (continued)

• General guidelines (continued)
– Use the system your language allows to separate words in 

long, multiword variable names

– Consider including a form of the verb to be

– Name constants using all uppercase letters separated by 
underscores (_)

• Programmers create a list of all variables
– Data dictionary

36
Programming Logic and Design, Seventh Edition



Designing Clear Statements

• Avoid confusing line breaks

• Use temporary variables to clarify long statements

37
Programming Logic and Design, Seventh Edition



Avoiding Confusing Line Breaks

• Most modern programming languages are 
free-form

• Make sure your meaning is clear

• Do not combine multiple statements on one line

38
Programming Logic and Design, Seventh Edition



Using Temporary Variables to 
Clarify Long Statements

• Temporary variable 
– Work variable

– Not used for input or output

– Working variable that you use during a program’s 
execution

• Consider using a series of temporary variables to 
hold intermediate results

39
Programming Logic and Design, Seventh Edition



Using Temporary Variables to Clarify 
Long Statements (continued)

Figure 2-14 Two ways of achieving the same salespersonCommission result

40
Programming Logic and Design, Seventh Edition



Writing Clear Prompts and Echoing 
Input

• Prompt 
– Message displayed on a monitor to ask the user for a 

response 

– Used both in command-line and GUI interactive programs

• Echoing input
– Repeating input back to a user either in a subsequent 

prompt or in output

41
Programming Logic and Design, Seventh Edition



Writing Clear Prompts and Echoing 
Input (continued)

Figure 2-15 Beginning of a program 

that accepts a name and balance as input

42
Programming Logic and Design, Seventh Edition



43
Programming Logic and Design, Seventh Edition

Figure 2-16 Beginning of a program that accepts a 

name and balance as input and uses a separate prompt for each item



Maintaining Good Programming 
Habits

• Every program you write will be better if you: 
– Plan before you code

– Maintain the habit of first drawing flowcharts or writing 
pseudocode

– Desk-check your program logic on paper

– Think carefully about the variable and module names you 
use

– Design your program statements to be easy to read and 
use

44
Programming Logic and Design, Seventh Edition



Summary

• Programs contain literals, variables, and named 
constants

• Arithmetic follows rules of precedence

• Break down programming problems into modules
– Include a header, a body, and a return statement

• Hierarchy charts show relationship among modules

• As programs become more complicated: 
– Need for good planning and design increases

45Programming Logic and Design, Seventh Edition


