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Chapter 2

Elements of High-Quality Programs



Objectives

In this chapter, you will learn about:

• Declaring and using variables and constants

• Performing arithmetic operations

• The advantages of modularization

• Modularizing a program

• Hierarchy charts

• Features of good program design
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Declaring and Using Variables
and Constants

• Data types
– Numeric consists of numbers

– String is anything not used in math

• Different forms
– Integers and floating-point numbers

– Literal and string constants

– Unnamed constants
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Working with Variables

• Named memory locations 

• Contents can vary or differ over time

• Declaration 
– Statement that provides a data type and an identifier for a 

variable

• Identifier
– Variable’s name
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Working with Variables (continued)

Figure 2-1 Flowchart and pseudocode for the number-doubling program
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Working with Variables (continued)

• Data type 
– Classification that describes: 

• What values can be held by the item

• How the item is stored in computer memory

• What operations can be performed on the data item

• Initializing the variable
– Declare a starting value for any variable

• Garbage
– Variable’s unknown value before initialization
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Figure 2-2 Flowchart and pseudocode of number-doubling 

program with variable declarations



Naming Variables

• Programmer chooses reasonable and descriptive 
names for variables

• Programming languages have rules for creating 
identifiers
– Most languages allow letters and digits

– Some languages allow hyphens

– Reserved keywords are not allowed

• Variable names are case sensitive
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Naming Variables (continued)

• Camel casing
– Variable names such as hourlyWage have a “hump” in 

the middle

• Be descriptive
– Must be one word

– Must start with a letter

– Should have some appropriate meaning
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Assigning Values to Variables

• Assignment statement
– set myAnswer = myNumber * 2

• Assignment operator
– Equal sign 

– Always operates from right to left
• Valid

– set someNumber = 2
– set someOtherNumber = someNumber

• Not valid 
– set 2 + 4 = someNumber
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Understanding the Data Types of 
Variables

• Numeric variable 
– Holds digits 

– Can perform mathematical operations on it

• String variable 
– Can hold text

– Letters of the alphabet

– Special characters such as punctuation marks

• Type-safety 
– Prevents assigning values of an incorrect data type

11
Programming Logic and Design, Seventh Edition



Declaring Named Constants

• Named constant 
– Similar to a variable

– Can be assigned a value only once

– Assign a useful name to a value that will never be changed 
during a program’s execution

• Magic number 
– Unnamed constant

– Use taxAmount = price * SALES_TAX_AMOUNT 
instead of taxAmount = price * .06
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Performing Arithmetic Operations

• Standard arithmetic operators:
+ (plus sign)—addition

− (minus sign)—subtraction

* (asterisk)—multiplication

/ (slash)—division
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Performing Arithmetic Operations 
(continued)

• Rules of precedence
– Also called the order of operations

– Dictate the order in which operations in the same 
statement are carried out

– Expressions within parentheses are evaluated first

– Multiplication and division are evaluated next
• From left to right

– Addition and subtraction are evaluated next
• From left to right
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Performing Arithmetic Operations 
(continued)

• Left-to-right associativity
– Operations with the same precedence take place from left 

to right
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Performing Arithmetic Operations 
(continued)

Table 2-1 Precedence and associativity of five common operators

16
Programming Logic and Design, Seventh Edition



Understanding the Advantages
of Modularization

• Modules
– Subunit of programming problem

– Also called subroutines, procedures, functions, or 
methods

• Modularization
– Breaking down a large program into modules

– Reasons
• Abstraction

• Allows multiple programmers to work on a problem

• Reuse your work more easily
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Modularization Provides 
Abstraction

• Abstraction 
– Paying attention to important properties while ignoring 

nonessential details

– Selective ignorance

• Newer high-level programming languages 
– Use English-like vocabulary 

– One broad statement corresponds to dozens of machine 
instructions

• Modules provide another way to achieve abstraction
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Modularization Allows Multiple 
Programmers to Work on a Problem

• Easier to divide the task among various people

• Rarely does a single programmer write a commercial 
program
– Professional software developers can write new programs 

quickly by dividing large programs into modules

– Assign each module to an individual programmer or team
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Modularization Allows You to 
Reuse Work

• Reusability
– Feature of modular programs

– Allows individual modules to be used in a variety of 
applications

– Many real-world examples of reusability

• Reliability
– Assures that a module has been tested and proven to 

function correctly
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Modularizing a Program

• Main program
– Basic steps (mainline logic) of the program

• Include in a module
– Module header

– Module body

– Module return statement

• Naming a module 
– Similar to naming a variable

– Module names are followed by a set of parentheses
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Modularizing a Program 
(continued)

• When a main program wants to use a module
– “Calls” the module’s name

• Flowchart 
– Symbol used to call a module is a rectangle with a bar 

across the top

– Place the name of the module you are calling inside the 
rectangle

– Draw each module separately with its own sentinel 
symbols
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Figure 2-3 Program that produces a bill using only main program



Modularizing a Program 
(continued)

• Statements taken out of a main program and put into 
a module have been encapsulated

• Main program becomes shorter and easier to 
understand

• Modules are reusable

• When statements contribute to the same job, we get 
greater functional cohesion
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Figure 2-5 The billing program with constants declared within the module



Declaring Variables and Constants
within Modules

• Place any statements within modules
– Input, processing, and output statements

– Variable and constant declarations

• Variables and constants declared in a module are 
usable only within the module
– Visible

– In scope, also called local 

• Portable
– Self-contained units that are easily transported
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Declaring Variables and Constants
within Modules (continued)

• Global variables and constants 
– Declared at the program level

– Visible to and usable in all the modules called by the 
program

– Many programmers avoid global variables to minimize 
errors
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Understanding the Most Common
Configuration for Mainline Logic

• Mainline logic of almost every procedural computer 
program follows a general structure
– Declarations for global variables and constants

– Housekeeping tasks

– Detail loop tasks

– End-of-job tasks
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Understanding the Most Common
Configuration for Mainline Logic (cont’d)

Figure 2-6 Flowchart and pseudocode of

mainline logic for a typical procedural program
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Creating Hierarchy Charts

• Hierarchy chart 
– Shows the overall picture of how modules are related to 

one another

– Tells you which modules exist within a program and which 
modules call others

– Specific module may be called from several locations 
within a program

• Planning tool 
– Develop the overall relationship of program modules 

before you write them 

• Documentation tool
30

Programming Logic and Design, Seventh Edition



Features of Good Program Design

• Use program comments where appropriate

• Identifiers should be chosen carefully

• Strive to design clear statements within your 
programs and modules

• Write clear prompts and echo input

• Continue to maintain good programming habits as 
you develop your programming skills

31
Programming Logic and Design, Seventh Edition



Using Program Comments

• Program comments 
– Written explanations of programming statements

– Not part of the program logic 

– Serve as documentation for readers of the program

• Syntax used differs among programming languages

• Flowchart
– Use an annotation symbol to hold information that 

expands on what is stored within another flowchart 
symbol
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Using Program Comments 
(continued)
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Figure 2-12 Pseudocode that declares some variables and includes comments
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Figure 2-13 Flowchart that includes annotation symbols



Choosing Identifiers

• General guidelines
– Give a variable or a constant a name that is a noun 

(because it represents a thing)

– Give a module an identifier that is a verb (because it 
performs an action)

– Use meaningful names
• Self-documenting

– Use pronounceable names

– Be judicious in your use of abbreviations

– Avoid digits in a name
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Choosing Identifiers (continued)

• General guidelines (continued)
– Use the system your language allows to separate words in 

long, multiword variable names

– Consider including a form of the verb to be

– Name constants using all uppercase letters separated by 
underscores (_)

• Programmers create a list of all variables
– Data dictionary
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Designing Clear Statements

• Avoid confusing line breaks

• Use temporary variables to clarify long statements
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Avoiding Confusing Line Breaks

• Most modern programming languages are 
free-form

• Make sure your meaning is clear

• Do not combine multiple statements on one line
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Using Temporary Variables to 
Clarify Long Statements

• Temporary variable 
– Work variable

– Not used for input or output

– Working variable that you use during a program’s 
execution

• Consider using a series of temporary variables to 
hold intermediate results
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Using Temporary Variables to Clarify 
Long Statements (continued)

Figure 2-14 Two ways of achieving the same salespersonCommission result
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Writing Clear Prompts and Echoing 
Input

• Prompt 
– Message displayed on a monitor to ask the user for a 

response 

– Used both in command-line and GUI interactive programs

• Echoing input
– Repeating input back to a user either in a subsequent 

prompt or in output
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Writing Clear Prompts and Echoing 
Input (continued)

Figure 2-15 Beginning of a program 

that accepts a name and balance as input
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Figure 2-16 Beginning of a program that accepts a 

name and balance as input and uses a separate prompt for each item



Maintaining Good Programming 
Habits

• Every program you write will be better if you: 
– Plan before you code

– Maintain the habit of first drawing flowcharts or writing 
pseudocode

– Desk-check your program logic on paper

– Think carefully about the variable and module names you 
use

– Design your program statements to be easy to read and 
use
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Summary

• Programs contain literals, variables, and named 
constants

• Arithmetic follows rules of precedence

• Break down programming problems into modules
– Include a header, a body, and a return statement

• Hierarchy charts show relationship among modules

• As programs become more complicated: 
– Need for good planning and design increases
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