
Few words about how to write
[disputably] nice code
Kamill Gusmanov

Packages

Package system - way of hierarchical organization of the
project code

In Java packages map to file system.

Each file belonging to a package X.Y.Z:

Should be placed in a folder PROJECT/X/Y/Z

Should have explicit declaration package X.Y.Z;

Package visibility

package ru.innopolis.bootcamp2;
public class PublicClass { }

package ru.innopolis.bootcamp2;
class DefaultClass { }

Package naming conventions
A name for a Java package must be a sequence of one or
more valid Java identifiers separated by dots (“.”)

package java.lang;

package java.io;

package java.awt;

package ru.innopolis.iis.mlkr;

Usually, the letters in the name of a package are all
lowercase

If a package is to be widely distributed, it is a common
convention to prefix its name with the reverse Internet
domain name of the producing or distributing organization,
with slashes substituted by dots.

Packages in file system

Build in packages

We build and run with respect of the package

One class

javac ru/innopolis/bootcamp2/BootCampSpecificClass.java

cd ru/innopolis/bootcamp2
javac BootCampSpecificClass.java

java ru/innopolis/bootcamp2/BootCampSpecificClass

java DefaultClass

All classes in package

javac ru/innopolis/bootcamp2/*.java

All classes recursively (build tree)

Ant, Maven

Referencing the package

Stating coding standards
Coding standards - usually internal corporate document helping to

organize the code

Start from Java Code Conventions

Keep it simple (less than 20 rules)

Better if developed by the team

Be not too specific

Avoid bad standards

Evolve it over time

Stating coding standards

Common rules

Each Java source file (.java file) has the following
structure:

Introductory comments

Declaration of package (if needed)

Import instruction (if needed)

Definition of classes and interfaces (in Java you
can store single class* in a file)

What is comment

Comment - is a piece of text that do not affect compilation

Single line:

// something will happen here
int x = 4; //TODO: implement calculation of x!

Multiple lines (inline):

obj.callSomeMethod(a /* very important param */, b, c);
/* this is
Very long
Multiline
Comment */

Special comments

Use “//XXX” in a comment to flag something that
is bogus but works

Use “//FIXME” to flag something that is bogus
and broken

Use “//TODO” to flag something that should be
implemented

Special comments

Introductory comment (javadoc)

/**
 * @deprecated if you recommend not to use a class
 * to preserve backward compatibility
 *
 * @see OtherClass
 *
 * @serial SERIAL_NUMBER
 *
 * @since WHICH.VERSION.OF.THE.PROJECT/LIBRARY
 *
 * @version 1.0.0.1
 *
 * @author Stanislav Protasov
 */

*Javadoc support html http://www.codenet.ru/webmast/java/JavaDoc/

Introductory comment (javadoc)

Introductory comment

/*
* @(#)Blah.java 1.82 99/03/18
*
* Copyright (c) 1994-1999 Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, California,
* 94303, U.S.A. All rights reserved.
*
* This software is the confidential and
* proprietary information of Sun Microsystems,
* Inc. ("Confidential Information"). You shall
* not disclose such Confidential Information and
* shall use it only in accordance with the terms
* of the license agreement you entered into
* with Sun.
*/

Class/Interface arrangement

Instance variables

Constructors

Methods

http://developer.alexanderklimov.ru/android/java/constructor.php

Class/Interface arrangement

Naming conventions

Divided into

Conventions about how to give meaningful names

Conventions about how names must be written

All of the names in your program should convey information
about the purpose of the item they refer

Use not abbreviations for your names (only if they are in
common use in normal speech)

Use descriptively named variables

Avoid ambiguous words

Class Names (same for interfaces)

Should be singular nouns, referring to the object they
represent

First letter and each internal word of class or interface names
is capitalized (UpperCamelCase)

Train, Event, Station

Do not put hierarchy information in class names, unless
real-world names bear this information

EmployeePerson, SecretaryEmployeePerson

Method names

Verbs or verbal forms in mixed cases

Starting with lower letter and each internal word should be
capitalized (lowerCamelCase)

Methods returning a boolean usually named with verb phrases
expressing the question

isRed()

Methods assigning boolean variable can be named with verb
phrases beginning with "set"/"be"

beOff(), setStateOffline()

Method names

Methods returning void should be named with imperative verbs describing what
they must do

openDBLink()

Methods converting a value into another should be named with verb phrases
starting with "as"/"to" and

denoting the converted type

asDecimal(), toString()

Other methods should describe what they return

previousSignal()

Accessor methods may report the variable’s name prefixed with “get” or “set”

Variables

Variables should be named for the objects they represent

Usually named with a singular noun

If it represent a collection of objects, its name should be
plural

The name should not include typing information

lowerCamelCase

One lowercase letter variable names are OK only for
temporary variables, indexes, etc.

Parameter and constant names

Name parameters in such a way that the method call
is readable

 public static double power(double base, double exponent) {
 //
 }

Use named constants and not literal values,
wherever a specific value is needed

In order to differentiate the names of constants from
the other names, constants are often completely
capitalized and compound names are separated
by an underscore

Code readability conventions

These conventions are often very close to design guidelines,
since code readability is obtained with cohesive classes
and methods

Classes and methods focused on performing a single
task

Methods must be short

In Java standard less than 10 statements

Every method performs just one task, and

Every full method must fit on one screen

Formatting conventions

Very important to ease code readability and to make quicker
code inspections

The specific code convention adopted is less important than
sticking to the same convention throughout the code

NetBeans: Alt + Shift + F

Eclipse: Ctrl/Cmd + Shift + F

Formatting conventions

One statement per line

Use indents to highlight structured programming
constructs

Do not indent too much…do not waste
horizontal space!

Do not indent too little…make the structure
evident!

Putting brackets

Open brace “{” appears at the end of the same line as the
class, interface, or method declaration

Closing brace “}” starts a line by itself aligned with the
opening statement, except null block “{}”

No space between a method name and the parenthesis
“(” starting its parameter list

Methods are separated by a blank line

When a nested statements occur within blocks

Use the 4 spaces rule, in general

Lines and wrapping

When an expression will not fit on a single line, break it
according to these general principles:

Break after a comma.

Break before an operator.

Prefer higher-level breaks to lower-level breaks.

Align the new line with the beginning of the expression at the
same level on the previous line.

If the above rules lead to confusing code or to code that's
squished up against the right margin, just indent 8 spaces
instead.

Variables declaration

There should be usually only one declaration per line to
promote comments of the variables

Variables should be initialized where they are declared…

Unless the value of the variable depends on some
computations to be performed later

Declarations should be placed at the beginning of the
outermost block where a variable is used

Avoid declarations in inner blocks of variables with the same
name as variable in outer blocks

Example of good style

http://www.docjar.net/html/api/java/util/Collections.java.html

Extra task

Given a system of linear equations, solve it using Cramer’s rule reusing created
code.

