### Parametric Linear Programming

1

# Systematic Changes in c<sub>i</sub>

- Objective function  $Z = \sum_{j=1}^{n} c_j x_j$  is replaced by  $Z(\theta) = \sum_{j=1}^{n} (c_j + \alpha_j \theta) x_j$
- Find the optimal solution as a function of  $\theta$



•  $Z(\theta) = (3 + 2\theta) x_1 + (5 - \theta) x_2$ 

| Range<br>of θ | Basic<br>Var.         | Z | <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>x</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | х <sub>5</sub> | RHS   |
|---------------|-----------------------|---|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-------|
| 0 ≤ θ ≤ 9/7   | Z(θ)                  | 1 | 0                     | 0                     | 0                     | (9-70)/6              | (3+20)/3       | 36-20 |
|               | x <sub>3</sub>        | 0 | 0                     | 0                     | 1                     | 1/3                   | -1/3           | 2     |
|               | <b>x</b> <sub>2</sub> | 0 | 0                     | 1                     | 0                     | 1/2                   | 0              | 6     |
|               | <b>x</b> <sub>1</sub> | 0 | 1                     | 0                     | 0                     | -1/3                  | 1/3            | 2     |

| Range<br>of θ | Basic<br>Var.         | Z | <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | × <sub>3</sub> | <b>x</b> <sub>4</sub> | <b>x</b> <sub>5</sub> | RHS   |
|---------------|-----------------------|---|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-------|
| 9/7 ≤ θ ≤ 5   | Z(θ)                  | 1 | 0                     | 0                     | (-9+70)/2      | 0                     | (5-θ)/2               | 27+50 |
|               | <b>x</b> <sub>4</sub> | 0 | 0                     | 0                     | 3              | 1                     | -1                    | 6     |
|               | <b>x</b> <sub>2</sub> | 0 | 0                     | 1                     | -3/2           | 0                     | 1/2                   | 3     |
|               | x <sub>1</sub>        | 0 | 1                     | 0                     | 1              | 0                     | 0                     | 4     |

| Range<br>of θ | Basic<br>Var.         | Z | <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | x <sub>3</sub> | <b>x</b> <sub>4</sub> | <b>x</b> <sub>5</sub> | RHS   |
|---------------|-----------------------|---|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-------|
| θ≥5           | Ζ(θ)                  | 1 | 0                     | -5+θ                  | 3+20           | 0                     | 0                     | 12+80 |
|               | <b>x</b> <sub>4</sub> | 0 | 0                     | 2                     | 0              | 1                     | 0                     | 12    |
|               | <b>X</b> <sub>5</sub> | 0 | 0                     | 2                     | -3             | 0                     | 1                     | 6     |
|               | <b>x</b> <sub>1</sub> | 0 | 1                     | 0                     | 1              | 0                     | 0                     | 4     |

#### Procedure Summary for Systematic Changes in c<sub>j</sub>

- 1. Solve the problem with  $\theta = 0$  by the simplex method.
- 2. Use the sensitivity analysis procedure to introduce the  $\Delta c_i = \alpha_i \theta$  changes into Eq.(0).
- Increase θ until one of the nonbasic variables has its coefficient in Eq.(0) go negative (or until θ has been increased as far as desired).
- 4. Use this variable as the entering basic variable for an iteration of the **simplex** method to find the new optimal solution. Return to Step 3.

# Systematic Changes in bi

- Constraints  $\sum_{j=1}^{n} a_{ij} x_j \le b_i$  for i = 1, 2, ..., m are replaced by  $\sum_{j=1}^{n} a_{ij} x_j \le b_i + \alpha_i \theta$  for i = 1, 2, ..., m
- Find the optimal solution as a function of  $\theta$



•  $y_1 + 3y_3 \ge 3 + 2\theta$  $2y_2 + 2y_3 \ge 5 - \theta$ 

| Range<br>of θ          | Basic<br>Var.  | Z | <b>У</b> <sub>1</sub> | <b>у</b> <sub>2</sub> | У <sub>3</sub> | У <sub>4</sub> | У <sub>5</sub> | RHS      |
|------------------------|----------------|---|-----------------------|-----------------------|----------------|----------------|----------------|----------|
|                        | Z(θ)           | 1 | 2                     | 0                     | 0              | 2              | 6              | -36+20   |
| $0 \le \theta \le 9/7$ | У <sub>3</sub> | 0 | 1/3                   | 0                     | 1              | -1/3           | 0              | (3+20)/3 |
|                        | У <sub>2</sub> | 0 | -1/3                  | 1                     | 0              | 1/3            | -1/2           | (9-70)/6 |

| Range<br>of θ          | Basic<br>Var.  | Z | У <sub>1</sub> | У <sub>2</sub> | У <sub>3</sub> | <b>У</b> <sub>4</sub> | У <sub>5</sub> | RHS       |
|------------------------|----------------|---|----------------|----------------|----------------|-----------------------|----------------|-----------|
|                        | Ζ(θ)           | 1 | 0              | 6              | 0              | 4                     | 3              | -27-50    |
| $9/7 \le \theta \le 5$ | У <sub>3</sub> | 0 | 0              | 1              | 1              | 0                     | -1/2           | (5-θ)/2   |
|                        | У <sub>1</sub> | 0 | 1              | -3             | 0              | -1                    | 3/2            | (-9+70)/2 |

| Range<br>of θ | Basic<br>Var.  | Z | <b>У</b> <sub>1</sub> | У <sub>2</sub> | У <sub>3</sub> | У <sub>4</sub> | У <sub>5</sub> | RHS    |
|---------------|----------------|---|-----------------------|----------------|----------------|----------------|----------------|--------|
| θ≥5           | Ζ(θ)           | 1 | 0                     | 12             | 6              | 4              | 0              | -12-80 |
|               | У <sub>5</sub> | 0 | 0                     | -2             | -2             | 0              | 1              | -5+θ   |
|               | У <sub>1</sub> | 0 | 1                     | 0              | 3              | -1             | 0              | 3+20   |

#### Procedure Summary for Systematic Changes in bi

- 1. Solve the problem with  $\theta = 0$  by the simplex method.
- 2. Use the sensitivity analysis procedure to introduce the  $\Delta b_i = \alpha_i \theta$  changes to the *right side* column.
- 3. Increase  $\theta$  until one of the **basic** variables has its value in the *right side* column go negative (or until  $\theta$  has been increased as far as desired).
- 4. Use this variable as the leaving basic variable for an iteration of the **dual simplex** method to find the new optimal solution. Return to Step 3.