Parametric Linear Programming

Systematic Changes in c_{j}

- Objective function $Z=\sum_{j=1}^{n} c_{j} x_{j}$ is replaced by

$$
Z(\theta)=\sum_{j=1}^{n}\left(c_{j}+\alpha_{j} \theta\right) x_{j}
$$

- Find the optimal solution as a function of θ

Example: Wyndor Glass Problem

- $Z(\theta)=(3+2 \theta) x_{1}+(5-\theta) x_{2}$

Example: Wyndor Glass Problem

Range of θ	Basic Var.	\mathbf{Z}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	RHS
	$\mathrm{Z}(\theta)$	1	0	0	0	$(9-7 \theta) / 6$	$(3+2 \theta) / 3$	$36-2 \theta$
0	\mathbf{x}_{3}	0	0	0	1	$1 / 3$	$-1 / 3$	2
	\mathbf{x}_{2}	0	0	1	0	$1 / 2$	0	6
	\mathbf{x}_{1}	0	1	0	0	$-1 / 3$	$1 / 3$	2

Example: Wyndor Glass Problem

Range of θ	Basic Var.	\mathbf{Z}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	RHS
	$\mathrm{Z}(\theta)$	1	0	0	$(-9+7 \theta) / 2$	0	$(5-\theta) / 2$	$27+5 \theta$
	$9 / 7 \leq \theta \leq 5$	\mathbf{x}_{4}	0	0	0	3	1	-1
	\mathbf{x}_{2}	0	0	1	$-3 / 2$	0	$1 / 2$	3
	\mathbf{x}_{1}	0	1	0	1	0	0	4

Example: Wyndor Glass Problem

Range of $\boldsymbol{\theta}$	Basic Var.	\mathbf{Z}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	RHS
$\theta \geq 5$	$\mathrm{Z}(\theta)$	1	0	$-5+\theta$	$3+2 \theta$	0	0	$12+8 \theta$
	\mathbf{x}_{4}	0	0	2	0	1	0	12
	\mathbf{x}_{5}	0	0	2	-3	0	1	6
	\mathbf{x}_{1}	0	1	0	1	0	0	4

Procedure Summary for Systematic Changes in C_{j}

1. Solve the problem with $\theta=0$ by the simplex method.
2. Use the sensitivity analysis procedure to introduce the $\Delta c_{j}=\alpha_{j} \theta$ changes into Eq.(0).
3. Increase θ until one of the nonbasic variables has its coefficient in Eq.(0) go negative (or until θ has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method to find the new optimal solution. Return to Step 3.

Systematic Changes in b_{i}

- Constraints $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ for $i=1,2, \ldots, m$ are replaced by

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}+\alpha_{i} \theta \text { for } i=1,2, \ldots, m
$$

- Find the optimal solution as a function of θ

Example: Wyndor Glass Problem

- $y_{1}+3 y_{3} \geq 3+2 \theta$

$$
2 \mathrm{y}_{2}+2 \mathrm{y}_{3} \geq 5-\theta
$$

Example: Wyndor Glass Problem

Range of $\boldsymbol{\theta}$	Basic Var.	\mathbf{Z}	\mathbf{y}_{1}	\mathbf{y}_{2}	\mathbf{y}_{3}	\mathbf{y}_{4}	\mathbf{y}_{5}	RHS
$0 \leq \theta \leq 9 / 7$	$\mathrm{Z}(\theta)$	1	2	0	0	2	6	$-36+2 \theta$
	\mathbf{y}_{3}	0	$1 / 3$	0	1	$-1 / 3$	0	$(3+2 \theta) / 3$
	\mathbf{y}_{2}	0	$-1 / 3$	1	0	$1 / 3$	$-1 / 2$	$(9-7 \theta) / 6$

Example: Wyndor Glass Problem

Range of $\boldsymbol{\theta}$	Basic Var.	\mathbf{Z}	$\mathbf{y}_{\mathbf{1}}$	\mathbf{y}_{2}	\mathbf{y}_{3}	\mathbf{y}_{4}	\mathbf{y}_{5}	RHS
$9 / 7 \leq \theta \leq 5$	$\mathrm{Z}(\theta)$	1	0	6	0	4	3	$-27-5 \theta$
	\mathbf{y}_{3}	0	0	1	1	0	$-1 / 2$	$(5-\theta) / 2$
	\mathbf{y}_{1}	0	1	-3	0	-1	$3 / 2$	$(-9+7 \theta) / 2$

Example: Wyndor Glass Problem

Range of $\boldsymbol{\theta}$	Basic Var.	\mathbf{Z}	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	\mathbf{y}_{3}	\mathbf{y}_{4}	\mathbf{y}_{5}	RHS
$\theta \geq 5$	$\mathrm{Z}(\theta)$	1	0	12	6	4	0	$-12-8 \theta$
	\mathbf{y}_{5}	0	0	-2	-2	0	1	$-5+\theta$
	\mathbf{y}_{1}	0	1	0	3	-1	0	$3+2 \theta$

Procedure Summary for Systematic Changes in bi

1. Solve the problem with $\theta=0$ by the simplex method.
2. Use the sensitivity analysis procedure to introduce the $\Delta b_{i}=\alpha_{i} \theta$ changes to the right side column.
3. Increase θ until one of the basic variables has its value in the right side column go negative (or until θ has been increased as far as desired).
4. Use this variable as the leaving basic variable for an iteration of the dual simplex method to find the new optimal solution. Return to Step 3.
