
DConf 2016, Berlin
Ethan Watson, Senior Generalist Programmer

AAA GAMING WITH SOME D CODE

QUANTUM BREAK
WHAT THIS TALK WILL COVER

• Integrating D

• A major use case

• Getting it shipped

• Where to for the future?

• Third person cinematic action game with integrated live
action TV show

• Xbox One, Windows 10

• #1 selling game on week of release in 8 countries including
UK, Italy, France, and Switzerland

• Biggest selling new Microsoft IP this console generation

QUANTUM BREAK
WHAT IS IT?

INTEGRATING D

PREVIOUSLY AT DCONF 2013
USING D ALONGSIDE A GAME ENGINE

• Code as data

– D code exists as data in our pipeline, allowing new logic to be
shipped out without creating a new build

• Export functions between C++ and D

– Use D language features to avoid the pain that doing the same
in C++ would introduce

• Reloading code for rapid iteration

– Compile time code inspection and generation to serialise and
deserialise D objects

CODE AS DATA
DYNAMIC BINDING BETWEEN C++ AND D

D’S COMPILE TIME FEATURES
WHAT DID I GET MYSELF IN TO?

• Mark up functions/interfaces with version numbers

– Variable inside @(Export) and @(Import) UDA in D, #define
parameter in C++

– Matching versions has the nice benefit of solving Windows
DLL Hell

VERSIONING
BECAUSE CODE AND DATA NEVER MATCH NICELY

• Stagger submitting D code until new build is published

– Shelve D code

– Submit C++ code

– Email team

– Publish C++ code

– Submit D code

• Pain for programmers, seamless for everyone else

– (Well, mostly seamless, still requires a data sync with a new
build which isn’t always done)

– Not a problem with Unity/Unreal thanks to going whole hog
with treating code as data

– There is a better solution to be found for our needs

VERSIONING
BECAUSE CODE AND DATA NEVER MATCH NICELY

BINARY COMPATIBILITY
IT JUST WORKS!

@(Version(3)) struct DebugGraph

{

 @(AddedVersion(2)) Vector2 m_vTopLeft;

 @(AddedVersion(3)) Vector2 m_vBottomRight;

 @(Import) void start(const(char)* pLabel, ref const(Vector2) vTopLeft, ref const(Vector2) vBottomRight);

 @(Import) void plot(const(Vector2)* pPoints, int iPointCount, ref const(Color) color);

 final void start(string label, ref const(Vector2) vTopLeft, ref const(Vector2) vBottomRight) { ... }

 final void start(in Vector2[] points, ref const(Color) color) { ... }

}

class SomeObject

{

 version(SomeObjectDebug) DebugGraph graph;

 mixin ExportClass;

}

BINARY COMPATIBILITY
IT JUST WORKS!

class DebugGraph

{

 Vector2 m_vTopLeft;

 Vector2 m_vBottomRight;

 enum { Version = 3, RequiredVersion = 2 };

 OSP_BEGIN(DebugGraph, Version, RequiredVersion)

 OSP_VARIABLE(m_vTopLeft, 2);

 OSP_VARIABLE(m_vBottomRight, 3);

 OSP_END;

};

OSP_DEFINE(DebugGraph);

• Creating bindings to do code in D – 30+ minutes and the
staggered submit hassle

• Doing the same code in C++ - 5 minutes and everyone
can just wait for the new build

• Catch 22!

• A problem with the plugins/binding system, not the D
language itself

– (But we can solve some of the problems with D by using a
compile-time parser that reads C++ header files and
auto-generates binary compatible structs and bindings for
us…)

PLUGINS AND BINDINGS FOR RAPID ITERATION
or MAINTENANCE SUCKS

A MAJOR USE CASE

• Our Morpheme setup required code and data to be in
sync

• Code publish time of a day or more is bad

ANIMATION – NO ONE MOVES WITHOUT IT
LIFE BEFORE D

• D plugins? Well, they solve some problems!

– Generic component system written, specialised for animation
networks

– Manually go through and port C++ code to D components

– Roll out the system, keep C++ code for fallback, then nuke the
C++ code from orbit

– Submitting new D code with new data became a regular
occurance, and minor maintenance of code logic didn’t need
a whole new build. Win!

ANIMATION – NO ONE MOVES WITHOUT IT
D + PLUGINS = WIN!

GETTING IT SHIPPED

• core.stdc.stdlib alloc/calloc/realloc/free

– gc_rawAlloc, gc_rawCalloc, gc_rawRealloc, gc_rawFree

– Hooking up our engine’s allocation functions required
staggering DLL initialisation

SHIPPING WITH D
MEMORY MANAGEMENT

SHIPPING WITH D
MEMORY MANAGEMENT

extern(Windows) BOOL DllMain(HINSTANCE hInstance, ULONG ulReason, LPVOID pvReserved)

{

 final switch(ulReason)

 {

 case DLL_PROCESS_ATTACH:

 g_hInstance = hInstance;

 break;

 case DLL_THREAD_ATTACH:

 // Regularly called before the Setup function with multiple threads active!

 }

}

export extern(Windows) void Setup(AllocFunc allocMem, CAllocFunc callocMem, ReallocFunc reallocMem, FreeFunc freeMem)

{

 setAllocFunctions(allocMem, callocMem, reallocMem, freeMem);

 dll_process_attach(g_hInstance, true);

}

• The GC itself wasn’t “solved”

– Far stricter memory requirements than normal programs

– Industry standard is to have clear construction and
destruction phases and budget time accordingly

SHIPPING WITH D
MEMORY MANAGEMENT

• The GC itself wasn’t “solved”

– Automatic Reference Counting is our preferred method

• Attempted to add compiler frontend support myself

• Wasn’t confident that I caught everything, put it to the side

SHIPPING WITH D
MEMORY MANAGEMENT

• The GC itself wasn’t “solved”

– GC has 32MB, never collects, increments in 8MB chunks

• This is quite clearly rubbish and needs a proper solution

SHIPPING WITH D
MEMORY MANAGEMENT

• Runtime porting still needs work

• LoadLibrary -> LoadPackagedLibrary

– Auto-packaged files as data only work from deployment
project FFFFFFFFFFFFFFFFFFFFFFFF

• std.datetime reghacks instead of using Windows APIs

• core.sys.windows.threadaux needs a new implementation
– We didn’t do it, but we get by without it

SHIPPING WITH D
UNIVERSAL WINDOWS PLATFORM REQUIREMENTS

QUANTUM BREAK
XBOX ONE & WINDOWS 10

FIRST AAA GAME WITH D CODE TO SHIP ON XBOX ONE AND WINDOWS 10

• Wasn’t used enough, could have done it in C++

– More the fault of the plugin system, statically linking code
would have been far simpler

• For the future though? High amount of interest

– Natural threading boundaries make a task-based system safer
to implement

• No solid way to enforce boundaries in C++

– AI wants to “script” behaviours with it, code gen around it to
fit in to frameworks

– Render effects in D

– Speaking of scripting…

• Internal scripting language used by level designers

• Lacks modern features and no debugger

• Why have a scripting language at all when we already treat code
as data?

WAS IT WORTH IT?
LOOKING TO THE FUTURE

• Almost!

• Few areas that need tightening up

– ARC support please please please please please

• “Official” console support (PS4, Xbox One)

– PS4 especially is critical for AAA gaming

• Single instance of D runtime for entire application would
be very beneficial

• Open sourcing our binding system?

D FOR AAA GAMING
IS IT READY?

QUESTIONS?

