
Prepared by:
QMO March 2013

Test Cases Overview

Fundamental Test Process

Test Case Definition / Structure

Test Case Implementation

Test Case Specification

Test Case Management tools

Best Practices

Agenda

Fundamental Test Process

C
O

N
TR

O
L

Analysis and Design

Implementation and
Execution

Evaluation
and Reporting

Test closure
activities

Test Planning

According to Standard Glossary of Terms used in
Software Testing

…The purpose of the
Implementation and Execution phase is to
organize the test cases in procedures and
/ or scripts and to perform the physical
test in the correct environment.

Test Planning and Control

▪ Test Planning
– Determine the scope and risks and identify the objectives of testing

– Determine the test approach (techniques, test items, coverage, etc)

– Implement the test policy and/or the test strategy

– Determine the required test resources (e.g. people, test environment, PCs)

– Schedule test analysis and design, test implementation, execution and evaluation

– Determine the exit criteria

▪ Test Control
– Measure and analyze the results of reviews and testing

– Monitor and document progress, test coverage and exit criteria

– Provide information on testing

– Initiate corrective actions

– Make decisions

Test Analysis and Design

▪ Test Analysis and Design
– Review the Test Basis *

– Identify Test Conditions ** based on analysis of Test Items **

– Design the tests using Test Design Techniques

– Evaluate testability of the requirements and system

– Design the test environment set-up and identify any required infrastructure and
tools

* Test Basis – all documents from which the requirements of a component or system can be inferred
(the documentation on which the test cases are based).

** Test Items (Test Conditions) – an item or event of a component or system that could be
verified by one or more test cases, e.g. a function, transaction, feature, quality attribute or structural
element.

Test Implementation and Execution

▪ Test Implementation
– Develop and prioritize our test cases, using the techniques

– Create test suites from the test cases for efficient test execution

– Implement and verify the environment

▪ Test Execution
– Execute the test suites and/or individual test cases, following test procedures

– Log the outcome of test execution

– Report discrepancies as incidents

– Repeat test activities as a result of action taken for each discrepancy

Evaluation and Reporting

▪ Evaluating Exit Criteria and Reporting
– Check test logs against the exit criteria specified in test planning

– Assess if more tests are needed or if the exit criteria specified should be changed

– Write a test summary report for stakeholders

Test Closure Activities

▪ Test Closure Activities:
– Check which planned deliverables we actually delivered

– Finalize and archive ‘testware’

– Evaluate how the testing went and analyze lessons learned

Analysis and Design

Implementation and
Execution

Test Case
Specification

Test Design
Specification

Evaluation
and Reporting

Test Summary
Report

Test Planning

Output Documentation

Completion

C
O

N
TR

O
L

Test Plan

Outputs

TEST CASE DEFINITION / STRUCTURE

▪ Test Case - is …

▪ Test Case consists of …

▪ Test Cases mission…

Test Case – is …

– a set of input values, execution preconditions, expected

results and execution, post conditions, developed for a

particular objective or test condition, such as to

exercise a particular program path or to verify

compliance with a specific requirement

– documentation specifying inputs, predicted results, and

a set of execution conditions for a test item

* according to Standard Glossary of Software Engineering Terminology (IEEE 610)

…makes you think about specific usage scenarios, looking for places

forgotten by everybody (like implicit requirements);

Test Cases mission
Test cases creation…

…helps you detect bugs early, since errors in code can be prevented

before the coding is done, also new test ideas will be generated;

…makes your work effective, test cases are prepared before actual

implementation, so when it is done, you are ready to go and test product

quickly and efficiently;

…improves your testing coverage, since cover requirements thoroughly;

…helps newcomers to familiarize with application.

…comes as evidence of testing work;

Test Case consists of…

ID Name Objective Type

Pre-conditions

Auto Status

Test Data

Priority

Expected Result

Actual ResultStatus

Attachment

Test Steps

* Test Case structure might vary depending on particular project needs.

▪ Test Case ID
– Identification of the test case
– It should be unique across Test Case Specification
– Can consist of numbers or/and letters
 Example: 1, 2, 3, etc; UR.001, UR.002, etc

▪ Test Case Name
– Short name of test case which briefly indicates what will be verified

▪ Description / Objective
– Describes the functionality/actions that test case validates/does
– It should be detailed enough to understand purpose of test case

▪ Priority
– Reflects the relative importance of the test case taking into consideration different aspects
– Can be presented by words or numbers
 Example: High, Medium, Low, etc;
 Major, Minor, Trivial, etc;
 1, 2, 3 (where 1-the most important, and 3-the least important), etc

Test Case Structure

▪ Test Case Type
– Reflects the type of test case depending on what kind of testing is covered by particular test case
 Example: GUI, Functional, System, Performance, etc.

▪ Automation Status
– Indicates whether test cases is candidate for automation taking into consideration different aspects or not
– Also indicates whether test cases is automated already or not
 Example:

Candidate – test case is recommended for automation, but it is not automated yet
Not Candidate – test case is not recommended to be automated and should be run manually

Automated – test case is automated and during the next execution can be run automatically etc.

▪ Pre-condition
– Defines conditions that should be met before test case can be executed
– Usually pre-condition field lists data/actions which should exist/be done in system and links to appropriate

test cases/test functions which can setup required pre-conditions

▪ Test Steps
– Step by step instructions on how to carry out the test case
– There should not be missed or redundant steps!

Test Case Structure

▪ Expected Result
– Shows how the system must react based on the test steps

– Expected results should be mentioned only for test case objective!

– “Verify”, “Correctly”, “Successfully” words are forbidden for expected results! Exact behavior of
the system, which is going be verified, should be mentioned:

 Example:
Incorrect: Verify “TestUser” user is created -> It is not understandable how to verify it

Correct: “TestUser” user appears in the list of users

▪ Test Inputs / Test Data
– Lists data which is used while test case execution

– Can be presented in this field directly or via link to attached files

– Data should be accurate!

▪ Attachment
– May contain files which can be used while test case execution

Test Case Structure

▪ Execution Result / Status
– Shows the result of test case execution to indicate whether behavior of the system meets

expected results of test case or not

 Example:
Pass – expected results of test case and behavior of the system match

Fail – expected results of test case and behavior of the system do not match

Blocked – test case was unable to be executed due to some reasons (e.g. blocker issue, etc)

Skipped – test case was untested since it wasn’t planned to be executed this time, etc.

▪ Actual Result
– Shows the actual output of the system. This field is used when actual behavior of the system

doesn’t meet expected results of test case

Test Case Structure

– high critical functionalities, which are the parts of Core test cases or new functionality,
implemented in build/release

– modules containing more bugs, more complex or more dependent

– areas which are highly accessed by the customer/end users

– positive test cases

– risk analysis

Test Case: Priority

Prioritizing test cases can be done by considering:

Software testers may prioritize their test cases in order:

– to reduce the cost of regression testing, so that those which are more important, by
some measure (e.g. if the time limits means…), are run earlier in the regression testing
process

– to increase a test suite's rate of fault detection, thus allowing developers to fix
severe faults earlier in software development process

Good Candidates for Automation are:

– Repetitive test cases that run for multiple builds

– Test cases that run on several different configurations (hardware/OS)

– Frequently used functionality that introduces high risk conditions

– Test cases that tend to cause human error

– Test cases that require multiple data sets

– Test cases that are impossible to perform manually

– Test cases that take a lot of effort and time when manual testing

Bad Candidates for Automation are:

– If automation efforts are few times higher than manual execution

– Test cases that are only performed a few times

– Some test steps cannot be automated

Test Case: Automation Status
It is impossible to automate all testing!

TEST CASE IMPLEMENTATION

▪ Test Case Implementation Flow (http://www.youtube.com/watch?v=-b3Pj2IU5FI)

▪ Test Case Implementation Example

▪ Test Data Preparation

Test Case Implementation Flow

Requirement

Test Set

Test Script

Test Scenario

Test Case

Any statement describing a functionality that is expected of the system

Any condition that could possibly happen in production

Pre-conditions + Input -> Output + Post Conditions

A group of similar test cases that require the same steps to be executed

A set of steps, manual or automated, to execute a set of similar test cases

Test Case Implementation Example

Requirement :

 Test Design

18-55 patient should be able to post a request, which should be
processed within 1 hour. If patient is 45-55 female with more
then 1 child – request should be processed within 30 minutes.

Test Case Implementation Example

 Test Case

Test Data Representation

In Test Steps In Test Data section In Attachment

Pros
- suitable to use when

test case is a candidate
for automation.

Pros
- easy to maintain;
- one test case can be

executed with different
data and you do not
need to duplicate test
cases.

Pros
- easy to maintain data;
- data in separate

document are better
structured.

Cons
- not suitable for manual

testing (each time test
case executes the same
input values);

 - hard to maintain.

Cons
- test data field is not

readable in case of a lot
of data or long values.

Cons
- opening separate file

for each test case is
time consuming.

Test Data Preparation

Test Data on Tester’s disposal
☺

Pros
- time saving during test cases

designing;
- time saving for experienced

tester in specific area during
test cases execution (not
always, since some test cases
require complex inputs,
queries, etc.);

- important bugs can be found.

Cons
- time consuming for

non-experienced tester in
specific area during test cases
execution;

- hard to entail issue due to
chaotic inputs.

Test Data Preparation

TEST CASE SPECIFICATION

▪ Test Case Specification - is …

▪ Test Case Specification consists of …

– a document specifying a set of test cases (objective,

inputs, test actions, expected results, and execution

preconditions) for a test item;

– main objective to specify in details each test listed in

Test Design Specification;

– specifies test data for use in running the test conditions

identified in Test Design Specification.

* according to Standard Glossary of Software Engineering Terminology (IEEE 610)

Test Case Specification – is …

Test Case Specification consists of …

Test Case Specification ID Test Items

Input Specifications Output Specifications

Inter-case DependenciesSpecial Procedural Requirements

Environmental Needs

* Test Case Specification might vary depending on particular project needs.

▪ Test Case Specification Identifier section covers

– Unique "short" name for the test case
– Version date and version number of the test case
– Version Author and contact information
– Revision history

▪ Test items identifies

– the items or features to be tested by test case. References for source
documents (Requirements Specification, Mock-ups, Users Guide etc) can be
provided in the section as well

▪ Input Specifications identifies

– all inputs required to execute the test case (Data, Tables, Human Actions,
Conditions, Files etc)

– It is also acceptable to simplify the documentation process by using tables for
elements, steps and values

Test Case Specification

▪ Output Specifications identifies

– all outputs required to verify the test case
– outputs can also be simplified using tables as noted above and may even be

included in the same table as the associated input to further simplify the
documentation and improve its usefulness

▪ Environmental needs consists of

– Hardware
» Configurations
» Limitations

– Software
» System (Operating systems, Compilers, Tools)

– Other Application
» Mix of applications

– Other
» Facilities
» Training

Test Case Specification

▪ Special procedural requirements identifies

– Any special constraints on the test case(s)
– Special approach (in needed) for executing test case(s)
– Focus on key elements such as:

» Special Setup
» Operations intervention
» Output location and identification
» Special wrap-up

▪ Inter-case dependencies identifies

– Any prerequisites for test cases
– It is also recommended that the relationship of test cases be documented at

both ends of the relationship.

Test Case Specification

TEST CASE MANAGEMENT TOOLS

▪ TCM Tools assets

▪ Test Link

▪ MS Excel

▪ Test Cases Examples

Test Case Management Tool

TCM

Test Data
tracking

Standards
and

Conventions

Tests
Management

Environment

Resources

Defects

Change

Metrics and
Reporting

TestLink: Specification/Test Suites

Contains all
designed test

cases

Contains test cases
grouped in Test Suites

and their Runs

▪ Test Cases to Requirements
traceability

▪ Keywords classification

▪ Defects creation and linkage
to bug tracking system

▪ Test Suites creation and run
on different configurations

▪ Filtering abilities

▪ Non-flexible test cases creation
and update possibilities

▪ Poor test execution reports

▪ Poor test data management

▪ Impossibility to edit test case
while execution

▪ Test cases versioning is not
supported

▪ Poor performance

TestLink: Pros and Cons

One of the possible representations of test cases in Excel:

MS Excel: Specification/Test Suites

▪ Many organizations use Microsoft Excel to create and manage Test Cases. Test
Case Specifications are stored in repositories

▪ Excel can be easily customized
(e.g.: additional fields can be added)

▪ It is easy to track changes (and
versions)

▪ Important fields/notes/etc can
be highlighted (e.g.: masked in
different colors, bolded etc)

▪ Test cases and execution results
are stored in the same place, so
it is easy to make updates (even
while execution)

▪ Test cases included in Excel
document cannot be updated
simultaneously

▪ No automatic linking:
requirement – test case, issue –
test case

▪ Excel limits in number of steps
(long text is not fully visible in
cell)

MS Excel

▪ PractiTest – the complete & lightweight SaaS solution for QA Management, SaaS

Test Management, Issue Tracking and Requirements

▪ 5 key features of PractiTest

– Flexible Hierarchical Views

– Fields and Workflow Customization

– Intelligent Anti-Duplication Bugs Mechanism

– Bugs submitting by Email

– Super-Fast Bug Review

PractiTest

PractiTest: Test Library

Contains all designed
test cases

Contains test cases grouped
in Test Suites and their Runs

▪ Flexible Test Cases design and
management

▪ Test Cases to Requirements
traceability

▪ Issues creation and linking
possibility

▪ Fields and Workflow Customization

▪ Powerful test execution reports

▪ Summary Visualization within
Dashboard

▪ Filtering and many others

▪ Absence of On-Premise solution
PractiTest is SaaS based without ability
of in-house hosting

▪ Not user friendly interface while
test steps execution
e.g.: each test case step represents in
separate table

▪ Impossibility to edit test case
while execution

PractiTest: Pros and Cons

Example №1

Example №2

Example №3

Example №4

BEST PRACTICES

▪ Write test cases for all possible test conditions of test item

▪ Write test cases with necessary level of detail:
– Detailed test cases if automation is going to have place

– Detailed test cases if any legal compliance standards to testing on project

– Non-detailed test cases (or just test objectives) if test case won’t be executed often or step setup is
described in another document (link to the document should be provided)

▪ Write test cases independent and cross-platform:

– The last test case step should return system to the state before executing this test case

– It is possible to re-order test cases without additional steps or data setup

– Tests should be cross-platforms as reasonably possible, working across different devices, platforms,
screen resolutions, etc

▪ Write test cases according to STANDARD TEMPLATE (project
convention)

Best Practices

▪ Write short test cases (up to 10-15 steps)

▪ Write steps using simple English and general words

▪ Write ACCURATE test cases

▪ Write test cases so that expected results are easy to interpret

▪ Provide TEST DATA if possible or where it makes much sense

▪ Add reference to bugs and requirements

▪ Add notes/highlight things if you want to convey / pay attention to some info

▪ Write detailed SQL queries (it will save time while executing)

▪ Keep test cases UP TO DATE ☺

Best Practices

Best Practices

