### Литература

- Гусев Н.М. Основы строительной физики.
   М.: Стройиздат, 1975.
- Фокин А.Ф. Строительная теплотехника ограждающих частей зданий. М.: Стройиздат, 1973.
- Богословский В.Н. Строительная физика.
   СПб: Авок северо-запад, 2006.
- Справочник проектировщика. Строительная физика/Перевод с немецкого под редакцией Соловьева А.К. М.: Техносфера, 2005.

### Нормативная литература

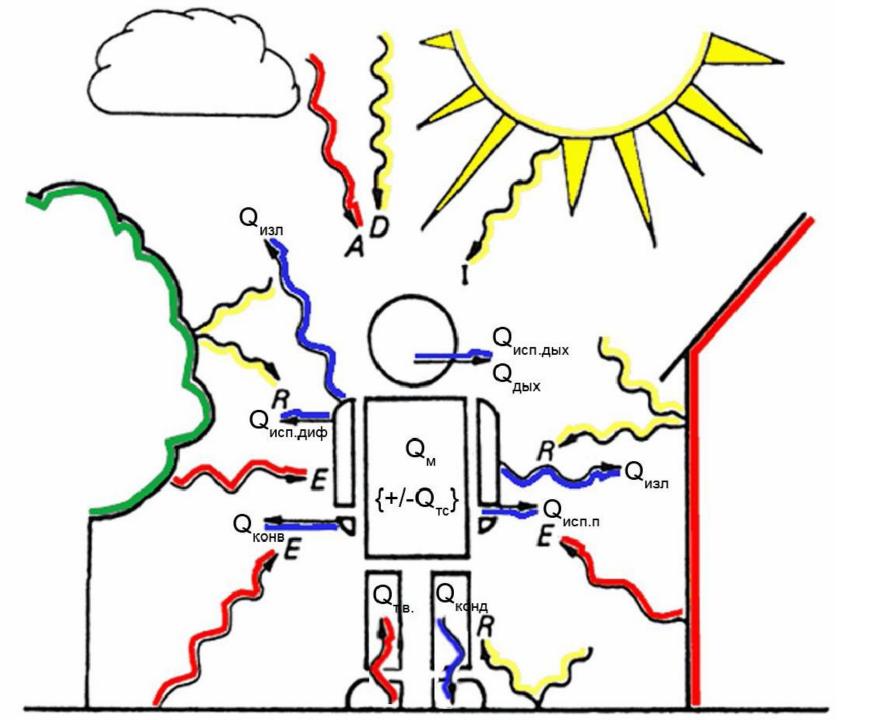
- СНиП 23-02-2003 Тепловая защита зданий;
- СП 23-101-2000 Проектирование тепловой защиты зданий.
- СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99\*;
- СП 5013330-2012 Актуализированная редакция СНиП 23-02-2003

### Строительная теплофизика

• *изучает* процессы передачи теплоты, переноса влаги, фильтрации воздуха применительно к строительным конструкциям

### Виды передачи теплоты

- Теплопроводность
- Излучение
- Конвекция
- Теплопроводность вид передачи теплоты в твердых телах. Вещество рассматривается как сплошная среда.
- Большинство строительных материалов являются пористыми телами. Внутри пор между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор


### Теплотехнический расчет ограждающих конструкций

- определяет количество тепла, теряемого отапливаемыми зданиями в зимний период;
- обеспечивает
- защиту здания от перегрева в летнее время;
- постоянство температуры воздуха в здании при неравномерной отдаче тепла системой отопления;
- температуру внутренней поверхности ограждений, гарантирующую невыпадение на ней конденсата;
- определяет влажностный режим ограждения,
   влияющий на теплозащитные качества ограждения и его долговечность.

### Тепловой баланс человека

$$(Q_{M} + Q_{T.B.}) \Box - (Q_{ИЗЛ} + Q_{КОНВ} + Q_{ИСП.ДИФ} + Q_{ИСП.ДЫХ} + Q_{ИСП.ДЫХ} + Q_{ИСП.П} + Q_{ИСП.П} + Q_{ДЫХ}) = Q_{TC}$$

- Q<sub>м</sub> -тепло, продуцируемое человеком (теплопродукция);
- Q<sub>т.в</sub>.- тепло, поступающее извне (например, от нагретых поверхностей оборудования и др.);
- Q<sub>изл</sub> -теплоотдача излучением;
- Q<sub>конв</sub> -теплоотдача конвекцией;
- Q<sub>конд</sub> □-теплоотдача за счет теплопроводности;
- Q<sub>исп.диф</sub> □-теплоотдача вследствие испарения диффузионной влаги с поверхности кожи;
- Q<sub>исп.дых</sub>, Q<sub>исп.п</sub>, Q<sub>дых</sub> -соответственно, теплоотдача вследствие испарения влаги с верхних дыхательных путей, испарение пота, нагревания вдыхаемого воздуха;
- Q<sub>тс</sub>- накопление или дефицит тепла в организме.



### Параметры микроклимата

- Температура воздуха
- Влажность воздуха
- Подвижность воздуха
- Радиационная температура

#### Температура внутреннего воздуха

- Пониженная 8-12° слабо отапливаемые помещения
- Нормальная 12-15° помещения, где люди заняты физической работой
  - 18-20° помещения, где люди находятся в малоподвижном состоянии, не требующем физического напряжения
- Повышенная 21-23° помещения для точной работы, не связанной с физическими усилиями

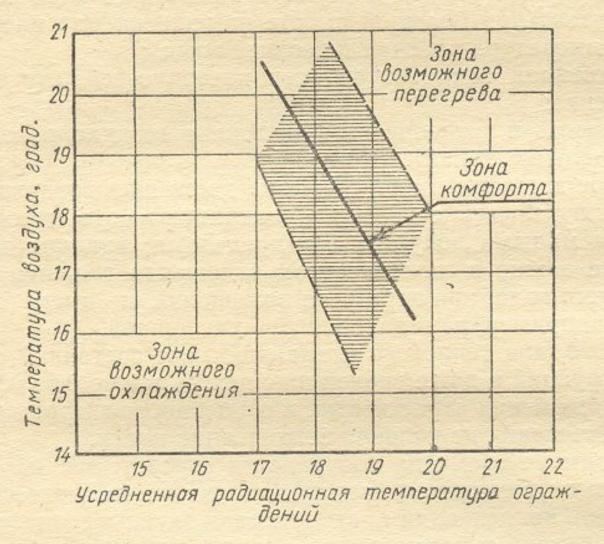
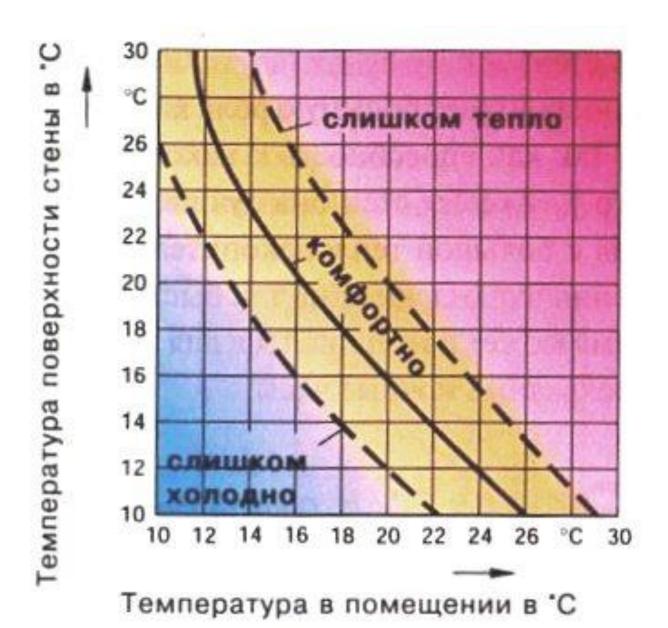
### Радиационная температура

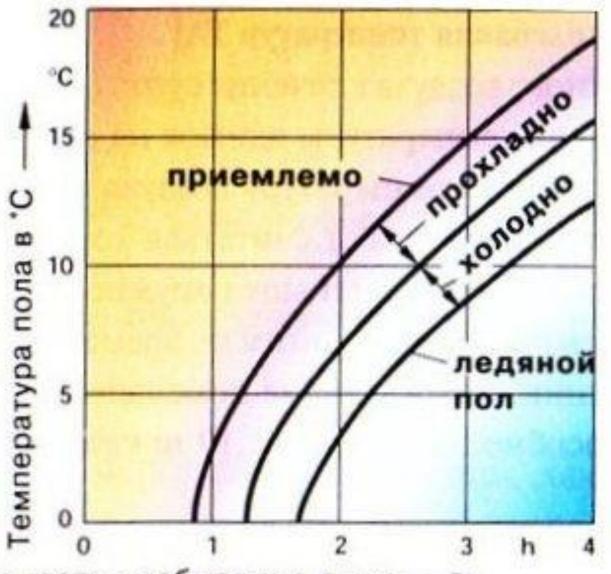
$$t_r = \sum_{i=1}^n A_i \cdot t_i / \sum_{i=1}^n A$$

- где А- площадь внутренней поверхности ограждений и отопительных приборов, м2;
- t температура внутренней поверхности ограждений и отопительных приборов, °C.

#### Измерение параметров микроклимата

- Измерение температуры в многоквартирных домах следует проводить не менее чем в двух комнатах площадью более 5 м2 каждая в квартирах на первом и последнем этажах. Измерения проводятся на высоте: 0,6 и 1,1 м от поверхности пола:
- в центре обслуживаемой зоны и на расстоянии 0,5 м от внутренней поверхности наружных стен и стационарных отопительных приборов;
- в центре помещения (в точке пересечения диагональных линий помещения).
- Температуру внутренней поверхности стен, перегородок, пола, потолка следует измерять в центре соответствующей поверхности.
- Для наружных стен со светопроемами и отопительными приборами температуру на внутренней поверхности следует измерять в центрах участков, образованных линиями, продолжающими грани откосов светопроема, а также в центре остекления и отопительного прибора.
- Относительную влажность в помещении следует измерять в центре помещения на высоте 1,1 м от пола.



Рис. III.1. Область температур, обеспечивающая комфортное тепловое состояние человека в отапливаемом помещении (по данным Н. А. Пономаревой)

# Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

|                                                                                                                              | Нормируемый температурный перепад $\Delta t_{n,  ^{\circ}\text{C},  ^{для}}$ |                                       |                                                  |                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------------|--|--|
| Здания и помещения                                                                                                           | наружных стен                                                                | покрытий и<br>чердачных<br>перекрытий | перекрытий над проездами, подвалами и подпольями | зенитных<br>фонарей               |  |  |
| 1. Жилые, лечебно-<br>профилактические и детские<br>учреждения, школы,<br>интернаты                                          | 4,0                                                                          | 3,0                                   | 2,0                                              | t <sub>int</sub> - t <sub>d</sub> |  |  |
| 2. Общественные, кроме указанных в поз. 1, административные и бытовые, за исключением помещений с влажным или мокрым режимом | 4,5                                                                          | 4,0                                   | 2,5                                              | t <sub>int</sub> - t <sub>d</sub> |  |  |

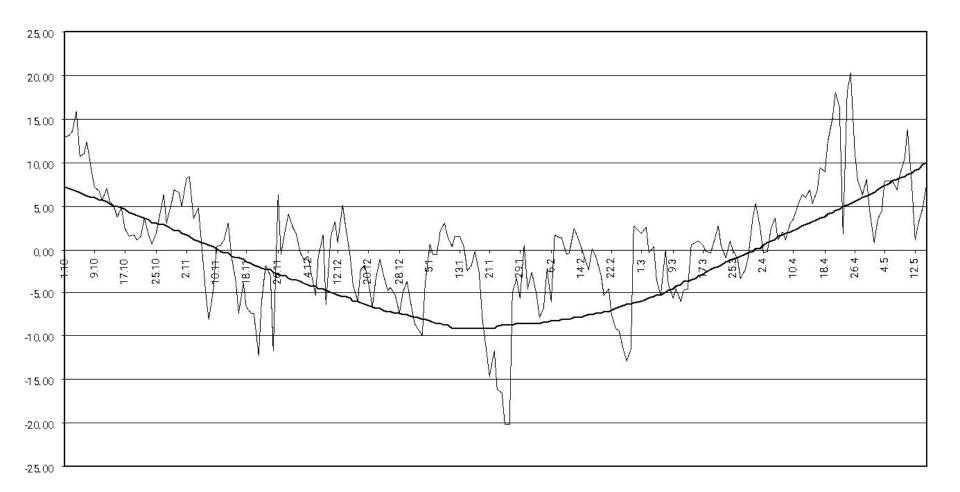
|                                                                                                                                                          | Нормируемый температурный перепад $\Delta t_{n,  ^{\circ}\mathrm{C},  \mathrm{для}}$ |                                            |                                                  |                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------|--|--|
| Здания и помещения                                                                                                                                       | наружны<br>х стен                                                                    | покрытий и<br>чердачных<br>перекрытий      | перекрытий над проездами, подвалами и подпольями | зенитных<br>фонарей |  |  |
| 3. Производственные с сухим и нормальным режимами                                                                                                        | $t_{int}$ - $t_{d}$ НО Не более 7                                                    | 0,8 ( $t_{int}$ - $t_{d}$ ), но не более 6 | 2,5                                              | $t_{int}$ - $t_d$   |  |  |
| 4. Производственные и другие помещения с влажным или мокрым режимом                                                                                      | t <sub>int</sub> - t <sub>d</sub>                                                    | 0,8 (t <sub>int</sub> - t <sub>d</sub> )   | 2,5                                              | -                   |  |  |
| 5. Производственные здания со значительными избытками явной теплоты (более 23 Вт/м3) и расчетной относительной влажностью внутреннего воздуха более 50 % | 12                                                                                   | 12                                         | 2,5                                              | $t_{int}$ - $t_d$   |  |  |

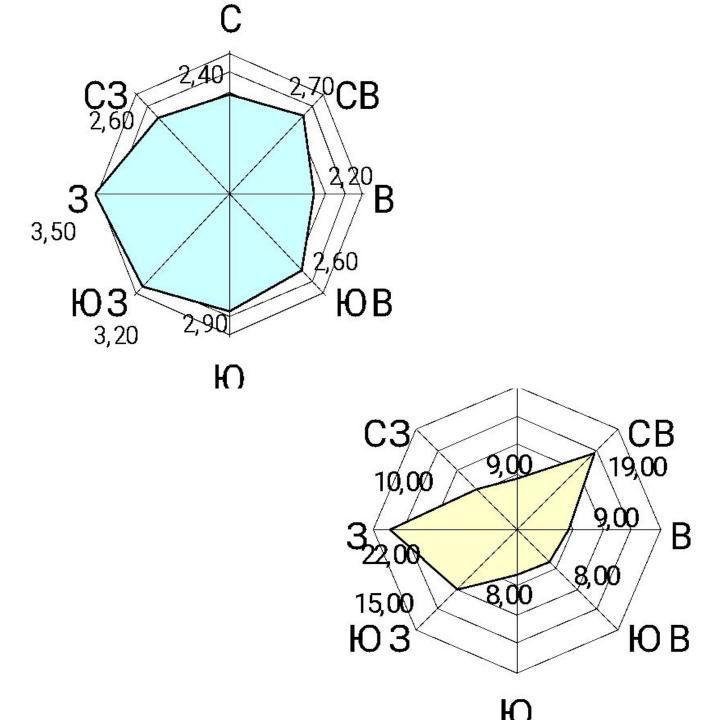




Продолжительность пребывания в час -

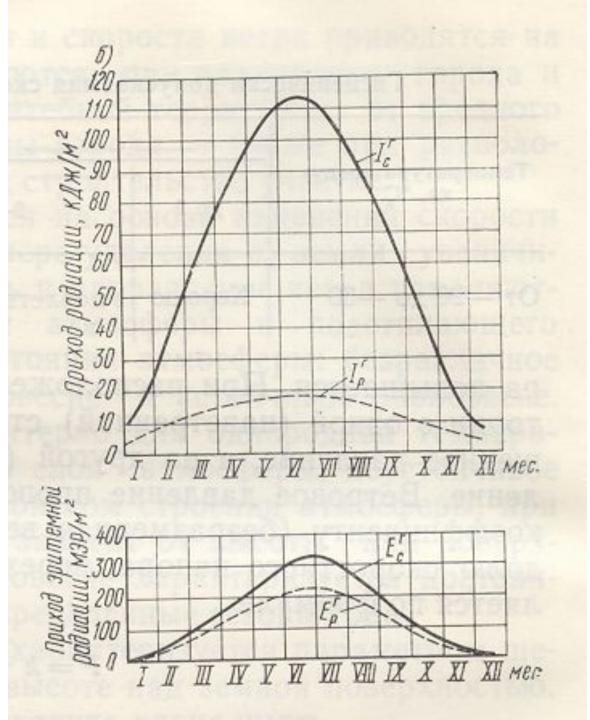
# Относительная влажность внутреннего воздуха


Менее 50% - сухие помещения


- 50-60% помещения с нормальной влажностью
- 61-75% влажные помещения
- Более 75% помещения с мокрым режимом

## Влажностный режим помещения

|            | Влажность воздуха в % при температуре |               |             |  |  |
|------------|---------------------------------------|---------------|-------------|--|--|
|            | До 12°                                | Св.12° до 24° | Св. 24°     |  |  |
| Сухой      | До 60                                 | До 50         | До 40       |  |  |
| Нормальный | Св.60 до 75                           | Св.50 до 60   | Св.40 до 50 |  |  |
| Влажный    | Св.75                                 | Св.60 до 75   | Св.50 до 60 |  |  |
| Мокрый     | _                                     | Св.75         | Св.60       |  |  |


- отопления - 8-15 рактерные виды погоды
- 16-28° теплая Ниже —12°— очень холодная • Выше 28° — жаркая
- Ниже —8° холодная, требующая отопления
- 8-15° прохладная
- 16-28° теплая
- Выше 28° жаркая
- Выше  $32^{\circ}$  очень жаркая





# Скорость ветра

| Показатели                               | Ориентация |     |   |     |     |     |      |     |
|------------------------------------------|------------|-----|---|-----|-----|-----|------|-----|
|                                          | C          | CB  | В | ЮВ  | Ю   | Ю3  | 3    | C3  |
| Скорость<br>ветра, м/с                   | 13         | 5,1 | 3 | 5,2 | 6,8 | 7,7 | 10,8 | 9,2 |
| Повторяемость<br>направления<br>ветра, % | 5          | 6   | 2 | 3   | 49  | 26  | 5    | 6   |



### Тепловая защита зданий

Передача теплоты через ограждающие конструкции

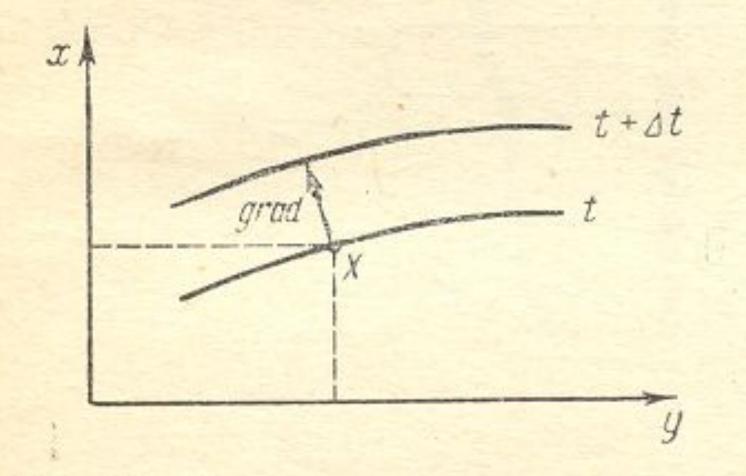



Рис. I.2. Изолинии температур двумерного поля:

x, y — направления координат; t=f(x, y)

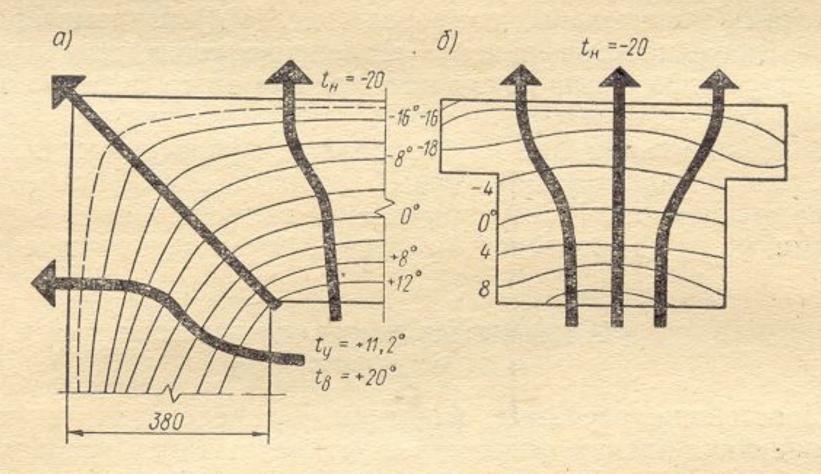
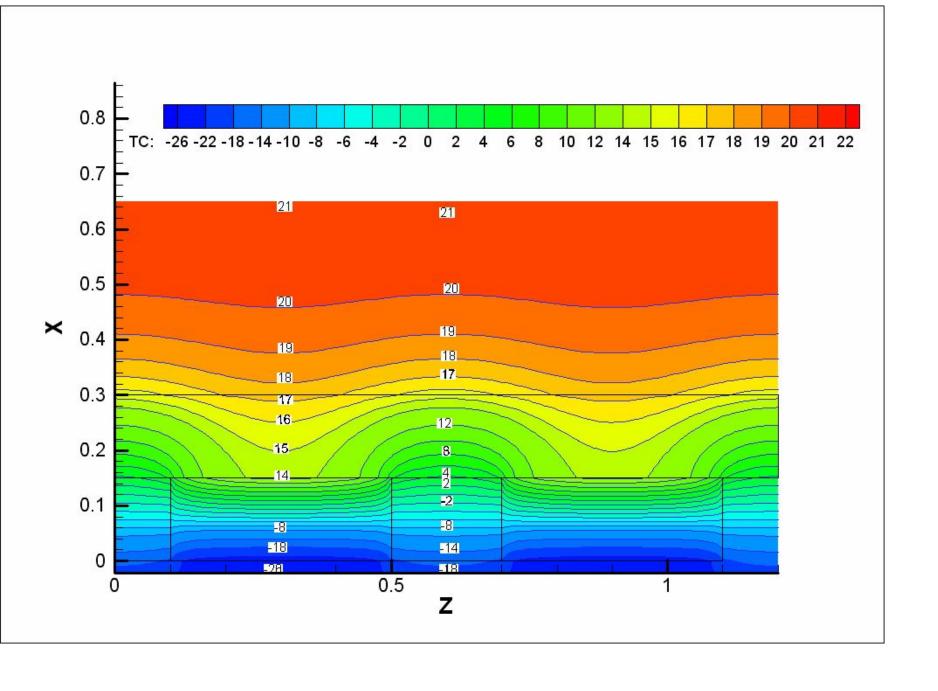
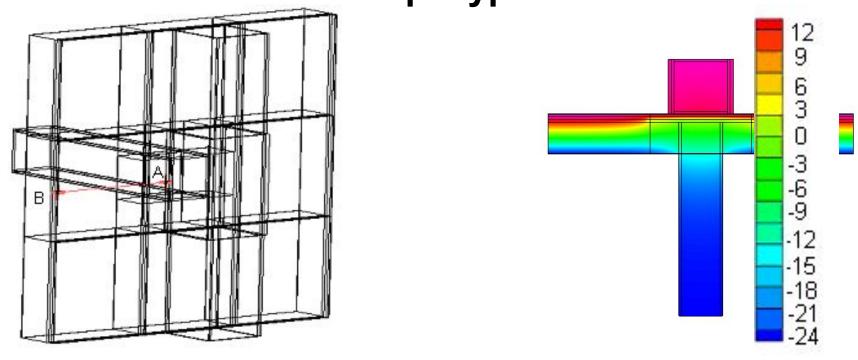





Рис. IV.5. Двумерные (плоские) температурные поля геометрически сложных элементов однородных наружных стен: a — наружного угла;  $\delta$  — простенка



# Расчетная схема фрагмента конструкции (3D)

и температурное поле



локальное снижение термического сопротивления конструкции в 3 раза

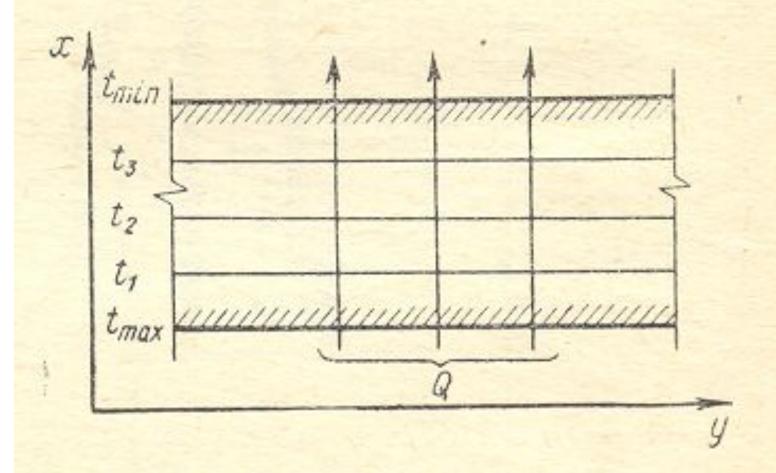



Рис. І.З. Однородное температурное поле в плоской протяженной стене: t=f(x); t — изолинии температур; Q — направление потока тепла

# УРАВНЕНИЕ НЕСТАЦИОНАРНОГО ТЕМПЕРАТУРНОГО ПОЛЯ В КОНСТРУКЦИИ

$$\frac{\partial t}{\partial \tau} = \alpha \left( \frac{\partial^2 t}{\partial x^2} \right)$$

$$a = \frac{\lambda}{c\rho}$$

а - коэффициент температуропроводности

### ДЛЯ СТАЦИОНАРНЫХ УСЛОВИЙ В ОДНОРОДНОЙ КОНСТРУКЦИИ

$$\frac{d^2t}{dx^2} = 0$$

### Уравнение Фурье

$$q = -\lambda \frac{\Delta t}{\Delta x}$$

где *qT* - *поверхностная плотность теплового потока*, проходящего через плоскость, перпендикулярную *тепловому потоку*, Вт/м2;

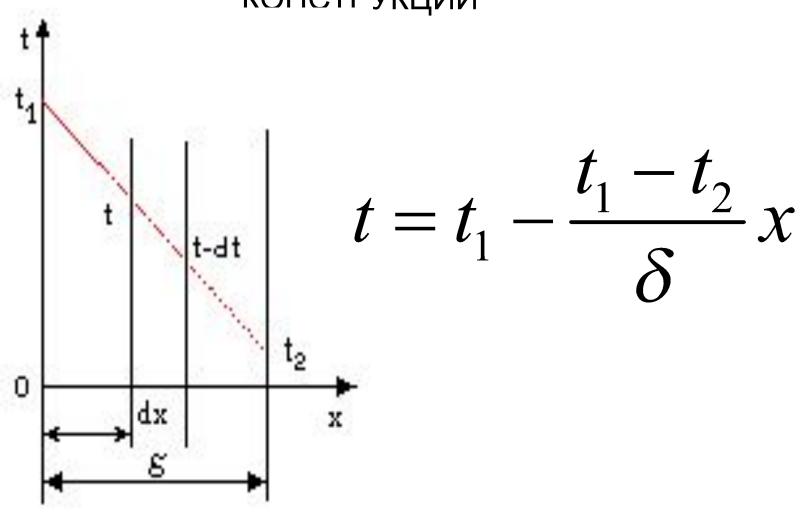
λ - теплопроводность материала, Вт/м. оС;

t - температура, изменяющаяся вдоль оси x, oC;

ПОТОК

Q/t

• 1 Дж/с =1Вт


Q/tS

- Плотность потока
- 1 Дж/с кв м =1Вт/кв м

# $\frac{\Delta t}{\Delta x}$

- носит название градиента температуры, и обозначается grad t. Градиент температуры направлен в сторону возрастания температуры,
- Теплопроводность является одной из основных тепловых характеристик материала.
- теплоизоляционные материалы теплопроводность менее 0,3 Вт/м.оС.

### РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР В ОДНОСЛОЙНОЙ КОНСТРУКЦИИ



### TEPMИЧЕСКОЕ СОПРОТИВЛЕНИЕ R

$$q = -\lambda \frac{\Delta t}{\Delta \delta}$$

$$t = \frac{t_1 - t_2}{\delta} = \frac{t_1 - t_2}{R},$$

### ТЕРМИЧЕСКОЕ СОПРОТИВЛЕНИЕ СЛОЯ

$$R = \frac{\delta}{\lambda}$$

$$R = \frac{t_1 - t_2}{q} = \frac{\Delta t}{q}, \quad \left[ \frac{M^2 \Psi \cdot K}{BT} \right]$$

## Сопротивление теплопередаче однослойной конструкции

$$R_{i} = \frac{1}{\alpha_{e}} + \frac{\delta_{i}}{\lambda_{i}} + \frac{1}{\alpha_{H}}$$

кв м град /Вт

Значения теплопроводности принимается в зависимости от зоны влажности и режима помещений

Сопротивление теплообмену на внутренней поверхности:

$$R_{ ext{int}} = rac{1}{lpha_{ ext{int}}}$$

Сопротивление теплообмену на наружной поверхности

$$R_{ext} = \frac{1}{\alpha_{ext}}$$

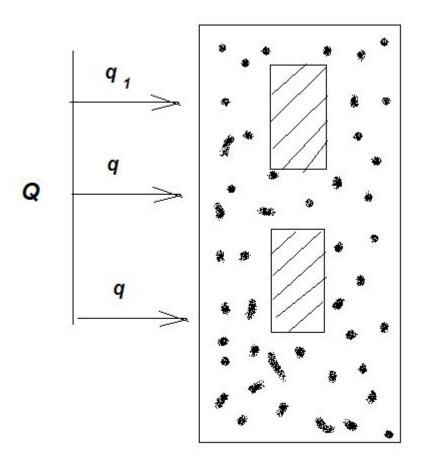
| Внутренняя поверхность ограждения                                                                                                                                                | Коэффициент<br>теплоотдачи <sup>Ос</sup> тия,<br>Вт/(м <sup>2</sup> .°С) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1. Стен, полов, гладких потолков, потолков с выступающими ребрами при отношении высоты $\frac{h}{a}$ ребер к расстоянию $a$ между гранями соседних ребер $\frac{h/a \le 0,3}{a}$ | 8,7                                                                      |
| 2. Потолков с выступающими ребрами при отношении $h/a>0,3$                                                                                                                       | 7,6                                                                      |
| 3. Окон                                                                                                                                                                          | 8,0                                                                      |
| 4. Зенитных фонарей                                                                                                                                                              | 9,9                                                                      |

Примечание - Коэффициент теплоотдачи а імт внутренней поверхности ограждающих конструкций животноводческих и птицеводческих зданий следует принимать в соответствии с СНиП 2.10.03.

| Наружная поверхность ограждения                                    | Коэффициент<br>2<br>теплоотдачи, Вт/(м<br>·°C) |
|--------------------------------------------------------------------|------------------------------------------------|
| 1. Наружные стены                                                  | 23,0                                           |
| 2. Ограждающие поверхности с вентилируемыми воздушными прослойками | 10,8                                           |

### РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ В МНОГОСЛОЙНОЙ КОНСТРУКЦИИ




## Сопротивление теплопередаче многослойной конструкции

$$R_{i} = \frac{1}{\alpha_{e}} + \sum_{i} \frac{\delta_{i}}{\lambda_{i}} + \frac{1}{\alpha_{H}}$$

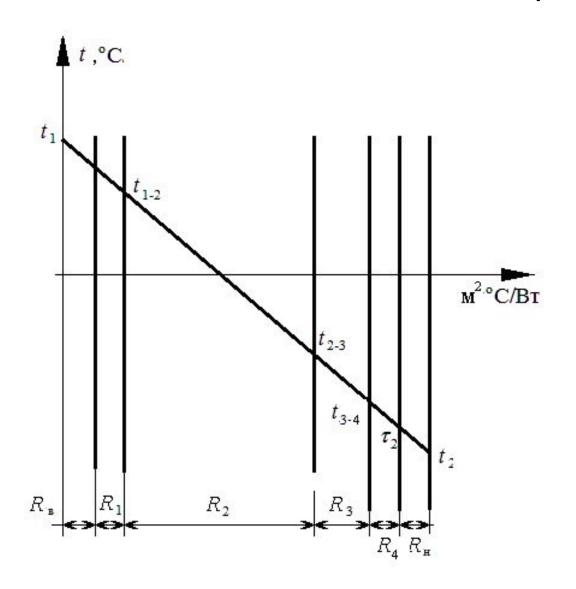
кв м град /Вт

Значения теплопроводности принимается в зависимости от зоны влажности и режима помещений

### Неоднородные конструкции



# Экспериментальный метод Приведенное сопротивление теплопередаче


$$\mathbf{R}_{0}^{1} = \frac{\mathbf{n} \cdot (\mathbf{t}_{int} - t_{ext}) \cdot A}{O}$$

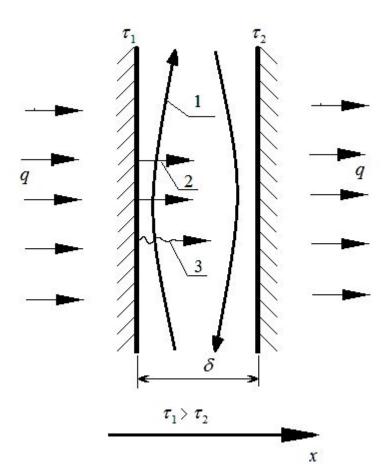
### Расчетный метод

Приведенное сопротивление теплопередаче

$$R_0^{r} = \frac{A}{\left(\sum_{i=1}^{m} \frac{A_i}{R_{o,i}^r}\right)},$$

## РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ В МНОГОСЛОЙНОЙ КОНСТРУКЦИИ




#### ПРИВЕДЕННОЕ ТЕРМИЧЕСКОЕ СОПРОТИВЛЕНИЕ

$$R_{0}^{Tp} = \frac{1}{\alpha_{H}} + \frac{\delta_{1}}{\lambda_{1}} + ... + \frac{\delta_{n}}{\lambda_{n}} + \frac{1}{\alpha_{B}}$$

### Воздушные прослойки

Замкнутые

Вентилируемые



|                              |                                               | Количество тепла в %, передаваемого |                            | Экви<br>вален<br>тный          |                         |                                                                        |
|------------------------------|-----------------------------------------------|-------------------------------------|----------------------------|--------------------------------|-------------------------|------------------------------------------------------------------------|
| Толщина<br>прослойк<br>и, мм | Плотность теплового потока, Вт/м <sup>2</sup> | теплопр<br>оводнос<br>тью           | ко<br>нв<br>ек<br>ци<br>ей | из<br>лу<br>че<br>н<br>ие<br>м | тепло<br>прово<br>дност | тица 18.4 Термическое сопротивление прослойки, Вт/м <sup>20</sup> С ст |
| 10                           | 30,8                                          | 38                                  | 2                          | 60                             | 0,062                   | 0,161                                                                  |
| 50                           | 25,9                                          | 9                                   | 19                         | 72                             | 0,259                   | 0,193                                                                  |
| 100                          | 24,8                                          | 5                                   | 20                         | 75                             | 0,495                   | 0,202                                                                  |
| 200                          | 23,8                                          | 2                                   | 19                         | 79                             | 0,951                   | 0,210                                                                  |
| Примечани                    | ие: приведенны                                | ые в т                              | габлі                      | ице                            | велич                   | ины соответствуют                                                      |

Примечание: приведенные в таблице величины соответствуют температуре воздуха в прослойке, равной 0 °C, разности температур на ее поверхностях 5 °C и коэффициенту излучения поверхностей C=4,4.

# Термическое сопротивление воздушных прослоек

| Толщина   | Термическое сопротивление замкнутой воздушной прослойки, |                |                               |             |  |  |  |
|-----------|----------------------------------------------------------|----------------|-------------------------------|-------------|--|--|--|
| воздуш-   | $BT/(M^2 \cdot {}^{\circ}C)$                             |                |                               |             |  |  |  |
| ной про-  | горизонтальной                                           | при потоке те- | горизонтальной при потоке те- |             |  |  |  |
| слойки, м | пла снизу вверх                                          | и вертикаль-   | пла сверх вниз                |             |  |  |  |
|           | ной                                                      |                |                               |             |  |  |  |
|           | при температуре воздуха в воздушной прослойке            |                |                               |             |  |  |  |
|           | положитель-                                              | отрицатель-    | положитель-                   | отрицатель- |  |  |  |
|           | ной                                                      | ной            | ной                           | ной         |  |  |  |
| 0,01      | 0,13                                                     | 0,15           | 0,14                          | 0,15        |  |  |  |
| 0,02      | 0,14                                                     | 0,15           | 0,15                          | 0,19        |  |  |  |
| 0,03      | 0,14                                                     | 0,16           | 0,16                          | 0,21        |  |  |  |
| 0,05      | 0,14                                                     | 0,17           | 0,17                          | 0,22        |  |  |  |
| 0,1       | 0,15                                                     | 0,18           | 0,18                          | 0,23        |  |  |  |
| 0,15      | 0,15                                                     | 0,18           | 0,19                          | 0,24        |  |  |  |
| 0,2-0,3   | 0,15                                                     | 0,19           | 0,19                          | 0,24        |  |  |  |