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Compare results

•K-means:
•http://www.naftaliharris.com/blog/visualizing-k-means-clustering/
•(I’ll choose -> Gaussian Mixture, Smiley Face)
•DBScan:
•http://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
•(Gaussian Mixture, Smiley Face)



DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) 
is a   data clustering algorithm proposed by Martin Ester, Hans-Peter 
Kriegel, Jörg Sander and Xiaowei Xu in 1996. It is a density-based 
clustering algorithm: given a set of points in some space, it groups 
together points that are closely packed together (points with many 
nearby neighbors), marking as outliers points that lie alone in 
low-density regions (whose nearest neighbors are too far away). 
DBSCAN is one of the most common clustering algorithms and also 
most cited in scientific literature.

•In 2014, the algorithm was awarded the test of time award (an award 
given to algorithms which have received substantial attention in theory 
and practice) at the leading data mining conference, KDD.



Preliminary

Consider a set of points in some space to be clustered. For the purpose 
of DBSCAN clustering, the points are classified as core points, (density-) 
reachable points and outliers (noise), as follows:

•A point p is a core point if at least minPts points are within distance ε of 
it, and those points are said to be directly reachable from p.

• 
•A point q is reachable from p if there is a path p

1
, ..., p

n
 with p

1
 = p and 

p
n
 = q, where each p

i+1
 is directly reachable from p

i
 (so all the points on 

the path must be core points, with the possible exception of q).

•All points not reachable from any other point are outliers.



Preliminary
If p is a core point, then it forms a cluster  together with all 
points 
(core or non-core) that are reachable from it.  Each cluster 
contains at 
least one core point; non-core points can be part of a cluster, 
but they 
form its "edge",  since they cannot be used to reach more 
points.



Preliminary

Two points p and q are density-connected if there is a point o such that
 both p and q are density-reachable from o. Density-connectedness is 
symmetric.
A cluster satisfies two properties:

•All points within the cluster are mutually density-connected.
•If a point is density-reachable from any point of the cluster, it is part of 
   the cluster as well.



Example

 
 

In this diagram, minPts = 3. Point A and 
the other red points are core points, 
because at least three points surround it in 
an ε radius. Because they are all 
reachable from one another, they form a 
single cluster. Points B and C are not core 
points, but are reachable from A (via other 
core points) and thus belong to the cluster 
as well. Point N is a noise point that is 
neither a core point nor density-reachable.



Algorithm

DBSCAN requires two parameters: ε (eps) and the minimum number of 
points required to form a dense region (minPts). It starts with an 
arbitrary starting point that has not been visited. This point's 
ε-neighborhood is retrieved, and if it contains sufficiently many points, 
a cluster is started. Otherwise, the point is labeled as noise. Note that 
this point might later be found in a sufficiently sized ε-environment of a 
different point and hence be made part of a cluster.



Algorithm

If a point is found to be a dense part of a cluster, its ε-neighborhood is 
also part of that cluster. Hence, all points that are found within the 
ε-neighborhood are added, as is their own ε-neighborhood when they 
are also dense. This process continues until the density-connected 
cluster is completely found. Then, a new unvisited point is retrieved 
and processed, leading to the discovery of a further cluster or noise.
The algorithm can be expressed as follows, in pseudocode following 
the original published nomenclature.



Main procedure



Procedure  expandCluster



Procedure  regionQuery



Note

The algorithm can be simplified by merging the per-point "has been 
visited" and "belongs to cluster C" logic, as well as by inlining the 
contents of the "expandCluster" subroutine, which is only called from 
one place. These simplifications have been omitted from the above 
pseudocode in order to reflect the originally published version. 
Additionally, the regionQuery function need not return P in the list of 
points to be visited, as long as it is otherwise still counted in the local 
density estimate.



Complexity

DBSCAN visits each point of the database, possibly multiple times (e.g., 
as candidates to different clusters). For practical considerations, 
however, the time complexity is mostly governed by the number of 
regionQuery invocations. DBSCAN executes exactly one such query for 
each point, and if an indexing structure is used that executes a 
neighborhood query in O(log n), an overall average runtime complexity 
of O(n log n) is obtained (if parameter ε is chosen in a meaningful way, 
i.e. such that on average only O(log n) points are returned). Without 
the use of an accelerating index structure, or on degenerated data (e.g. 
all points within a distance less than ε), the worst case run time 
complexity remains O(n²). 



Parameter estimation (minPts)
Ideally, minPts is the desired minimum cluster size. Otherwise a 
minimum minPts can be derived from the number of dimensions D in 
the data set, as minPts≥D+ 1. The low value of minPts = 1 does not 
make sense, as then every point on its own will already be a cluster. 
With minPts ≤ 2, the result will be the same as of hierarchical 
clustering. Therefore, minPts must be chosen at least 3. However, larger 
values are usually better for data sets with noise. The larger the data 
set, the larger the value of minPts should be chosen.



Parameter estimation (ε)

If ε is chosen much too small, a large part of the data will not be 
clustered; whereas for a too high value of ε, clusters will merge and the 
majority of objects will be in the same cluster. In general, small values 
of ε are preferable, and as a rule of thumb only a small fraction of 
points should be within this distance of each other.

•Distance function: The choice of distance function is tightly coupled to 
the choice of ε, and has a major impact on the results. In general, it will 
be necessary to first identify a reasonable measure of similarity for the 
data set, before the parameter ε can be chosen.



Advantages

•DBSCAN does not require to specify the number of clusters in the data a priori, as 
opposed to k-means.

•DBSCAN can find arbitrarily shaped clusters. It can even find a cluster completely 
surrounded by (but not connected to) a different cluster. Due to the MinPts 
parameter, the so-called single-link effect (different clusters being connected by a 
thin line of points) is reduced.

•DBSCAN  can find outliers.
•DBSCAN requires just two parameters and is mostly insensitive to the ordering of 
the points in the database. (However, points sitting on the edge of two different 
clusters might swap cluster membership if the ordering of the points is changed)

•The parameters minPts and ε can be set by an expert, if the data is well 
understood.



Disadvantages

•DBSCAN is not entirely deterministic: border points that are reachable from more 
than one cluster can be part of either cluster, depending on the order the data is 
processed. 

•The quality of DBSCAN depends on the distance measure used in the function 
regionQuery(P,ε). The most common distance metric used is Euclidean distance. 
Especially for high-dimensional data, this metric can be rendered almost useless 
due to the so-called "Curse of dimensionality", making it difficult to find an 
appropriate value for ε. This effect, however, is also present in any other algorithm 
based on Euclidean distance.

•DBSCAN cannot cluster data sets well with large differences in densities, since the 
minPts-ε combination cannot then be chosen appropriately for all clusters.

•If the data and scale are not well understood, choosing a meaningful distance 
threshold ε can be difficult.



DBScan and DBMSNothing…



Task 5

• Generate 3-4 areas (2D or 3D).
• Create an application and show the areas.
• Realize DBScan algorithm and cluster the areas.
• Show the result of clustering (paint the clusters with different 
   colors).


