
Microsoft® Official Course

Module 1

Review of Visual C# Syntax

Module Overview

•Overview of Writing Application by Using Visual C#
Data Types, Operators, and Expressions
Visual C# Programming Language Constructs

Lesson 1: Overview of Writing Application by Using
Visual C#

•What Is the .NET Framework?
Key Features of Visual Studio 2012
Templates in Visual Studio 2012
Creating a .NET Framework Application
Overview of XAML

What Is the .NET Framework?

•CLR
•Robust and secure environment for your managed code

•Memory management

•Multithreading

•Class library
• Foundation of common functionality

• Extensible

•Development frameworks
•WPF

•Windows store

•ASP.NET

•WCF

Key Features of Visual Studio 2012

•Intuitive IDE

•Rapid application development

•Server and data access

•IIS Express

•Debugging features

•Error handling

•Help and documentation

Templates in Visual Studio 2012

•Console Application

•Windows Forms Application

•WPF Application

•Windows Store

•Class Library

•ASP.NET Web Application

•ASP.NET MVC 4 Application

•WCF Service Application

Creating a .NET Framework Application

1. In Visual Studio, on the File menu, point to New,
and then click Project.

2. In the New Project dialog box, choose a template,
location, name, and then click OK.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args) { }
 }
}

Overview of XAML

•XML-based language for declaring UIs

•Uses elements to define controls

•Uses attributes to define properties of controls

<Label Content="Name:" HorizontalAlignment="Left" Margin="72,43,0,0"
VerticalAlignment="Top" />

<TextBox HorizontalAlignment="Left" Height="23" Margin="141,43,0,0"
Text="" VerticalAlignment="Top" Width="120" />

<Button Content="Click Me!" HorizontalAlignment="Left"
Margin="119,84,0,0" VerticalAlignment="Top" Width="75" />

Lesson 2: Data Types, Operators, and Expressions

•What are Data Types?
Expressions and Operators in Visual C#
Declaring and Assigning Variables
Accessing Type Members
Casting Between Data Types
Manipulating Strings

What are Data Types?

•int – whole numbers

•long – whole numbers (bigger range)

•float – floating-point numbers

•double - double precision

•decimal - monetary values

•char - single character

•bool - Boolean

•DateTime - moments in time

•string - sequence of characters

Expressions and Operators in Visual C#

Example expressions:

•+ operator

•/ operator

•+ and – operators

•+ operator (string concatenation)

a + 1

5 / 2

a + b - 2

"ApplicationName: " + appName.ToString()

Declaring and Assigning Variables

• Declaring variables:

• Assigning variables:

• Implicitly typed variables:

• Instantiating object variables by using the new operator

int price;
// OR
int price, tax;

price = 10;
// OR
int price = 10;

var price = 20;

ServiceConfiguration config = new ServiceConfiguration();

Accessing Type Members

•Invoke instance members

•Example:

var config = new ServiceConfiguration();

// Invoke the LoadConfiguration method.
config.LoadConfiguration();

// Get the value from the ApplicationName property.
var applicationName = config.ApplicationName;

// Set the .DatabaseServerName property.
config.DatabaseServerName = "78.45.81.23";

// Invoke the SaveConfiguration method.
config.SaveConfiguration();

<instanceName>.<memberName>

Casting Between Data Types

•Implicit conversion:

•Explicit conversion:

•System.Convert conversion:

int a = 4;
long b = 5;
b = a;

int a = (int) b;

string possibleInt = "1234";
int count = Convert.ToInt32(possibleInt);

Manipulating Strings

•Concatenating strings

•Validating strings

StringBuilder address = new StringBuilder();
address.Append("23");
address.Append(", Main Street");
address.Append(", Buffalo");
string concatenatedAddress = address.ToString();

var textToTest = "hell0 w0rld";
var regularExpression = "\\d";

var result = Regex.IsMatch(textToTest, regularExpression,
RegexOptions.None);

if (result)
{
 // Text matched expression.
}

Lesson 3: Visual C# Programming Language Constructs

•Implementing Conditional Logic
Implementing Iteration Logic
Creating and Using Arrays
Referencing Namespaces
Using Breakpoints in Visual Studio 2012
Demonstration: Developing the Class Enrollment
Application Lab

Implementing Conditional Logic

•if statements

•select statements

if (response == "connection_failed") {. . .}
else if (response == "connection_error") {. . .}
else { }

switch (response)
{
 case "connection_failed":
 . . .
 break;
 case "connection_success":
 . . .
 break;
 default:
 . . .
 break;
}

Implementing Iteration Logic

• for loop

• foreach loop

• while loop

• do loop

for (int i = 0 ; i < 10; i++) { ... }

string[] names = new string[10];
foreach (string name in names) { ... }

bool dataToEnter = CheckIfUserWantsToEnterData();
while (dataToEnter)
{
 ...
 dataToEnter = CheckIfUserHasMoreData();
}

do
{
 ...
 moreDataToEnter = CheckIfUserHasMoreData();
} while (moreDataToEnter);

Creating and Using Arrays

•C# supports:
• Single-dimensional arrays

• Multidimensional arrays

• Jagged arrays

•Creating an array

•Accessing data in an array:
• By index

• In a loop

int[] arrayName = new int[10];

int result = arrayName[2];

for (int i = 0; i < arrayName.Length; i++)
{
 int result = arrayName[i];
}

Referencing Namespaces

•Use namespaces to organize classes into a logically
related hierarchy

•.NET Class Library includes:
•System.Windows

•System.Data

•System.Web

•Define your own namespaces:

•Use namespaces:
•Add reference to containing library

•Add using directive to code file

namespace FourthCoffee.Console
{
 class Program {. . .}

Using Breakpoints in Visual Studio 2012

•Breakpoints enable you to view and modify the
contents of variables:
• Immediate Window

•Autos, Locals, and Watch panes

•Debug menu and toolbar functions enable you to:
•Start and stop debugging

• Enter break mode

•Restart the application

•Step through code

Demonstration: Developing the Class Enrollment
Application Lab

•In this demonstration, you will learn about the tasks
that you will perform in the lab for this module.

Text Continuation

Lab: Developing the Class Enrollment Application

•Exercise 1: Implementing Edit Functionality for the
Students List
Exercise 2: Implementing Insert Functionality for the
Students List
Exercise 3: Implementing Delete Functionality for
the Students List
Exercise 4: Displaying a Student’s Age

Logon Information

• Virtual Machines: 20483B-SEA-DEV11, MSL-TMG1
• User Name: Student
• Password: Pa$$w0rd

Estimated Time: 105 minutes

Text Continuation

Lab Scenario

• You are a Visual C# developer working for a software development company that is writing
applications for The School of Fine Arts, an elementary school for gifted children.

• The school administrators require an application that they can use to enroll students in a
class. The application must enable an administrator to add and remove students from
classes, as well as to update the details of students.

• You have been asked to write the code that implements the business logic for the
application.

• During the labs for the first two modules in this course, you will write code for this class
enrollment application.

• When The School of Fine Arts ask you to extend the application functionality, you realize
that you will need to test proof of concept and obtain client feedback before writing the
final application, so in the lab for Module 3, you will begin developing a prototype
application and continue with this until then end of Module 8.

• In the lab for Module 9, after gaining signoff for the final application, you will develop the
user interface for the production version of the application, which you will work on for the
remainder of the course.

Module Review and Takeaways

•Review Question(s)

Text Continuation

