
Microsoft® Official Course

Module 2

Creating Methods, Handling
Exceptions, and Monitoring
Applications

Module Overview

•Creating and Invoking Methods
Creating Overloaded Methods and Using Optional
and Output Parameters
Handling Exceptions
Monitoring Applications

Lesson 1: Creating and Invoking Methods

•What Is a Method?
Creating Methods
Invoking Methods
Debugging Methods
Demonstration: Creating, Invoking, and Debugging
Methods

What Is a Method?

•Methods encapsulate operations that protect data

•.NET Framework applications contain a Main entry
point method

•The .NET Framework provides many methods in the
base class library

Creating Methods

•Methods comprise two elements:
•Method specification (return type, name, parameters)

•Method body

•Use the ref keyword to pass parameter references

void StartService(int upTime, bool shutdownAutomatically)
{
 // Perform some processing here.
}

Invoking Methods

To call a method specify:
•Method name

•Any arguments to satisfy parameters

var upTime = 2000;
var shutdownAutomatically = true;
StartService(upTime, shutdownAutomatically);

// StartService method.
void StartService(int upTime, bool shutdownAutomatically)
{
 // Perform some processing here.
}

Debugging Methods

•Visual Studio provides debug tools that enable you
to step through code

•When debugging methods you can:
•Step into the method

•Step over the method

•Step out of the method

Demonstration: Creating, Invoking, and Debugging
Methods

In this demonstration, you will create a method,
invoke the method, and then debug the method.

Text Continuation

Lesson 2: Creating Overloaded Methods and Using
Optional and Output Parameters

•Creating Overloaded Methods
Creating Methods that Use Optional Parameters
Calling a Method by Using Named Arguments
Creating Methods that Use Output Parameters

Creating Overloaded Methods

•Overloaded methods share the same method name

•Overloaded methods have a unique signature

void StopService()
{
 ...
}

void StopService(string serviceName)
{
 ...
}

void StopService(int serviceId)
{
 ...
}

Creating Methods that Use Optional Parameters

•Define all mandatory parameters first

•Satisfy parameters in sequence

void StopService(
 bool forceStop,
 string serviceName = null,
 int serviceId =1)
{
 ...
}

var forceStop = true;
StopService(forceStop);

// OR

var forceStop = true;
var serviceName = "FourthCoffee.SalesService";
StopService(forceStop, serviceName);

Calling a Method by Using Named Arguments

•Specify parameters by name

•Supply arguments in a sequence that differs from
the method’s signature

•Supply the parameter name and corresponding
value separated by a colon

StopService(true, serviceID: 1);

Creating Methods that Use Output Parameters

•Use the out keyword to define an output parameter

•Provide a variable for the corresponding argument
when you call the method

bool IsServiceOnline(string serviceName, out string statusMessage)
{
 ...
}

var statusMessage = string.Empty;
var isServiceOnline = IsServiceOnline(
 "FourthCoffee.SalesService",
 out statusMessage);

Lesson 3: Handling Exceptions

•What Is an Exception?
Handling Exception by Using a Try/Catch Block
Using a Finally Block
Throwing Exceptions

What Is an Exception?

•An exception is an indication of an error or
exceptional condition

•The .NET Framework provides many exception
classes:
•Exception

•SystemException

•ApplicationException

•NullReferenceException

• FileNotFoundException

•SerializationException

Handling Exception by Using a Try/Catch Block

•Use try/catch blocks to handle exceptions

•Use one or more catch blocks to catch different
types of exceptions

try
{
}
catch (NullReferenceException ex)
{
 // Catch all NullReferenceException exceptions.
}
catch (Exception ex)
{
 // Catch all other exceptions.
}

Using a Finally Block

•Use a finally block to run code whether or not an
exception has occurred

try
{
}
catch (NullReferenceException ex)
{
 // Catch all NullReferenceException exceptions.
}
catch (Exception ex)
{
 // Catch all other exceptions.
}
finally
{
 // Code that always runs.
}

Throwing Exceptions

•Use the throw keyword to throw a new exception

•Use the throw keyword to rethrow an existing
exception
try
{
}
catch (NullReferenceException ex)
{
}
catch (Exception ex)
{
 ...
 throw;
}

var ex =
 new NullReferenceException("The 'Name' parameter is null.");
throw ex;

Lesson 4: Monitoring Applications

•Using Logging and Tracing
Using Application Profiling
Using Performance Counters
Demonstration: Extending the Class Enrollment
Application Functionality Lab

Using Logging and Tracing

•Logging provides information to users and
administrators
•Windows event log

•Text files

•Custom logging destinations

•Tracing provides information to developers
•Visual Studio Output window

•Custom tracing destinations

Using Application Profiling

•Create and run a performance session

•Analyze the profiling report

•Revise your code and repeat

Using Performance Counters

•Create performance counters and categories in
code or in Server Explorer

•Specify:
•A name

•Some help text

•The base performance counter type

•Update custom performance counters in code

•View performance counters in Performance
Monitor (perfmon.exe)

Demonstration: Extending the Class Enrollment
Application Functionality Lab

In this demonstration, you will learn about the tasks
that you will perform in the lab for this module.

Text Continuation

Lab: Extending the Class Enrollment Application
Functionality

•Exercise 1: Refactoring the Enrollment Code
Exercise 2: Validating Student Information
Exercise 3: Saving Changes to the Class List

Logon Information
• Virtual Machine: 20483B-SEA-DEV11, MSL-TMG1
• User Name: Student
• Password: Pa$$w0rd

Estimated Time: 90 minutes

Text Continuation

Lab Scenario

•You have been asked to refactor the code that you
wrote in the lab exercises for module 1 into
separate methods to avoid the duplication of code
in the Class Enrollment Application.

•Also, you have been asked to write code that
validates the student information that the user
enters and to enable the updated student
information to be written back to the database,
handling any errors that may occur.

Module Review and Takeaways

•Review Question(s)

Text Continuation

