
Module 6:
Troubleshooting JavaScript Code

Agenda

1. Exception Handling

2. Debugging Code in Browser

3. Using Console API

4. Useful links

Exception Handling

Errors are Natural

▪ Any software solution faces errors: invalid user

input, broken connection or bugs in code

▪ Errors break normal flow of the program

execution and may lead to fatal results in case if

not handled properly

www.fasticon.com

What is Exception and Exception Handling?

▪ Exception – is an event, which occurs during the execution of a program, that

disrupts the normal flow of the program's instructions.

▪ Exception handling is convenient way to handle errors

operation 1 operation 2 operation 3

operation 1 operation 2

normal flow:

exception handling:

exception

Exception Syntax

To make exception handling possible we should use two

keywords: try and catch:

try {
 // Block of code that may
 // raise an exception
} catch (err) {
 // Block of code to
 // handle an exception
}

Throwing Exceptions

To raise an exception we use throw keyword.

Throwing an exception will break normal code execution on a line
when the keyword is met and will give control to the nearest catch
block.

Syntax:

throw (new Error("Some meaningful message"));

Exception Handling Sample

▪ In a sample below we ask the user to enter age and convert it to a number. If
conversion returns NaN we throw an exception and handle it with catch block.

▪ Note that JS itself does not throws exceptions on math errors, its returns NaN

01 var age = parseInt(window.prompt("Enter your age"));
02 try {
03 if (isNaN(age))
04 throw (new Error("You entered incorrect value!"));
05 var nextAge = age + 10;
06 alert("In ten years you will be " + nextAge);
07 }
08 catch (err) {
09 alert(err.message);
10 }

Using finally keyword

Keyword finally is used in try..catch construction to define block of code
that is called whenever exception occurs or not.

The main purpose of it is to free resources allocated just before try
keyword

try {
 // Block of code that may raise an exception
} catch (err) {
 // Block of code to handle an exception
} finally {
 // Block of code that called whenever
 // exception occurs or not
}

Method .onerror()

▪ Method window.onerror() called each time when unhandled
exception occurs.

▪ The .onerror() event handler provides three pieces of information
to identify the exact nature of the error:
– Error message. The same message that the browser would display for the

given error

– URL. The file in which the error occurred

– Line number. The line number in the given URL that caused the error

Sample .onerror() handler

In a sample below we assign .onerror() event handler that is called on button

click because there is no function as myFunc() defined on the page:
<html>
<head>
 <script type="text/javascript">
 window.onerror = function (msg, url, line) {
 alert("Message : " + msg);
 alert("url : " + url);
 alert("Line number : " + line);
 </script>
</head>
<body>
 <p>Click the following to see the result:</p>
 <form>
 <input type="button" value="Click Me" onclick="myFunc();" />
 </form>
</body>
</html>

Debugging Code in Browser

What is Debugging?

▪ Debugging is a process of searching and removing bugs
from the code

▪ The process of debugging might be not easy and
sometimes becomes very tricky

▪ Writing clean, well-documented code that conforms
coding conventions greatly simplifies debugging process

▪ Most modern browsers have built-in tools or addons for
debugging JavaScript code

Using Developers Tools

▪ Press F12 to access

Developers Tools in most

browsers

▪ Console tab allows to

execute JS code and see

output of commands

including error messages

Code Executions Controls in Chrome Browser

▪ Google Chrome browser
provides full-featured
debugger that has execution
control buttons

▪ Opening Sources tab allows
to choose JS code of a
solution in external files as
well as in inside html file

Setting Breakpoints for JS Code in Chrome

▪ In Developer Tools open Sources tab and choose external JS file or navigate to JS code embedded

In HTML file.

▪ Click the line gutter to set a breakpoint for that line of code, select another script and set another

breakpoint.

Execution Control Buttons in Chrome

Continue: continues code execution to another breakpoint.

Step over: step through code line-by-line, do not enters functions

Step into: acts like Step over, however clicking Step into at the function
call will cause the debugger to move its execution to the first line in the
functions definition.

Step out: allows to run current function till the end move debugger's
execution to the parent function.

Toggle breakpoints: toggles breakpoints on/off while leaving their
enabled states intact.

Pause on Exceptions

There are two buttons to pause on exceptions:

 - pause on all exceptions

 - pause on uncaught exceptions only

Second button becomes visible only if first is pressed

1. Pause on all exceptions

2. Pause on uncaught exceptions only

Breakpoints on DOM Mutation Events

To stop execution on DOM mutation events right click on element,
select Inspect Element, right click on highlighted element and select
Break on Subtree Modifications

Breakpoints on XMLHttpRequest Events

XMLHttpRequest object is used to make Ajax requests. We'll learn Ajax in detail
in module 10.

To make breakpoints on XMLHttpRequest:

1. Click "+" button in XHR Breakpoints section;

2. Set URL filter in input field

1. Click button

2. Set URL filter

Breakpoints on JavaScript Event Listeners

To set breakpoint on Event Listeners:

▪ Expand Event Listener Breakpoints sidebar pane on the right side of Scripts panel
▪ Expand Mouse entry
▪ Set a mouseout Event Listener breakpoint by clicking on the checkbox near

the mouseout entry

Using Console API

Console object

The console object provides access to the browser's debugging console.

Console allows to log useful events and data while developing and debugging

the solution.

Sample output of browser's console:

Useful Methods

Useful methods of console object:

▪ .log() – general output of logging information

▪ .info(), .warn(), .error() – same as log() but add notification icons

▪ .dir() – shows specific JS object

▪ .dirxml() – shows xml code or html code of DOM element

▪ .group(), .groupCollapsed(), .groupEnd() – grouping output

▪ .time(), .timeEnd() – setting timer

▪ .profile(), .profileEnd() – using profiling tools

▪ .assert() – asserting conditions

Method .log()

▪ Method .log() used for general output of logging information

▪ Method accepts any number of arguments

▪ It is possible to use string formatting commands (%s – string, %d

– decimal, %i – integer, %f – floating point)

▪ Sample:

 console.log('Hello, my name is %s, my age is %i', 'John', 20);
> Hello, my name is John, my age is 20

Methods .info(), .warn(), .error()

Methods .info(), .warn(), .error() act almost as .log() but add icons

to console output that allows to distinguish between different type

of output

Methods .dirxml() and .dir()

Method .dirxml() – shows xml code or html code of DOM

element, .dir() – shows specific JS object :

Grouping Console Output

There are methods to group console output:

▪ .group() – start group

▪ .groupEnd() – end group

▪ .groupCollapsed() – start group collapsed

Setting Timer

To measure execution time of code blocks use methods:

▪ .time('Timer mark') – start timer

▪ .timeEnd('Timer mark') – stop timer

Profiling Code

To display profiling stack use methods:

▪ .profile() – start profiler

▪ .profileEnd() – stop profiler

access
profiling

results here

Making Assertions

▪ Method .assert() allows to make assertions about conditions in our
code.

▪ Syntax: console.assert(condition, message);
– condition – boolean condition to test;

– message – error message to output if condition is not met.

Best Practices

▪ Assume your code will fail

▪ Log errors to the server

▪ You, not the browser, handle errors

▪ Identify where errors might occur

▪ Throw your own errors

▪ Distinguish fatal versus non-fatal errors

▪ Provide a debug mode

Useful links

Links

▪ JavaScript Errors on W3Schools.com:
http://www.w3schools.com/js/js_errors.asp

▪ Error object on MDN:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Globa
l_Objects/Error

▪ Enterprise JavaScript Error Handling:
http://www.slideshare.net/nzakas/enterprise-javascript-error-handling-pres
entation

▪ Debugging JavaScript in Google Chrome:
https://developer.chrome.com/devtools/docs/javascript-debugging#breakp
oints-dynamic-javascript

Thank you!

