Современные строительные материалы и оборудование

§1.Общие сведения о строительных материалах.

1.1. Строительные материалы и изделия:

Природные	Искусственные	
кирпич, бетон, цемент, лесоматериалы и др.	гидроизоляционные, теплоизоляционные, акустические и др.	
Возведение различных элементов зданий (стен, перекрытий, покрытий, полов).	Специальное назначение	

1.2. Основные виды строительных материалов и изделий

Стройматериалы **подбираются** в зависимости:

1)От назначения

2)Условий строительства

3)Условий эксплуатации

зданий и **сооружений**

1.3. Строение и состав строительных материалов

Свойства материала определяются его структурой.

Структуру изучают на трех уровнях:

Макроструктура

Микроструктура

Внутреннее строение вещества (изучаемое на молекулярно-ионном уровне)

Строение материала, видимое невооруженным <u>глазом</u>

Строение, видимое через микроскоп

рентгеноструктурный анализ и др.

Физико-химические методы исследования: электронная микроскопия, термография,

Макроструктура

Макроструктуру твердых строительных материалов (кроме
горных пород) <i>делят</i> на следующие <u>группы</u> :

Конгломератная Искусственные конгломераты – бетоны различного вида, керамические и др.

Ячеистая Наличие макропор (газо- и пенобетонам, газосиликатам и др.).

Например, керамические материалы, получаемых в результате выгорания

Провосина минорали над вата и пр

Древесина, минеральная вата и др

Листовые, плитные и рулонные м-лы

Заполнители для бетонов, растворов, различного вида засыпка для теплозвукоизоляции и др

Слоистая
Рыхлозернистая
(порошкообразная)

Мелкопористая

Волокнистая

Микроструктура

Кристаллическая

Аморфная

Эти формы – м.б. *различным* <u>состоянием</u> *одного* и того же <u>вещества</u> (например *кварц* и различные формы <u>кремнезема</u>).


АМФОРНАЯ форма вещества *может* <u>перейти</u> в более устойчивую КРИСТАЛЛИЧЕСКУЮ

ТРЕПЕЛ* (амфорная форма диоксида кремнезема) + ИЗВЕСТЬ при затворении водой => образует гидросиликат кальция (кристаллическая форма) при нормальной температуре 15...25°C.

Производство СИЛИКАТНОГО КИРПИЧА - химическое взаимодействие КВАРЦЕВЫЙ ПЕСОК <=> ИЗВЕСТЬ (автоклавная обработка сырца насыщенным водяным паром с температурой 175°С и давлением 0,8 Мпа)

Тре́пел*

Рыхлая или <u>слабо сцементированная</u>, тонкопористая <u>осадочная</u> ПОРОДА

1.4. Свойства и качества

СВОЙСТВО — характеристика материала, проявляющаяся в процессе его Обработки, Применении, Эксплуатации.

Физиче- Механи- Химиче- Технолоские ческие ские гические

КАЧЕСТВО – совокупность свойств материала, обуславливающих способность его удовлетворять определённым **требованиям** B соответствии с его назначением.

Основные свойства строительных материалов

• ХИМИЧЕСКИЕ. Способность материалов сопротивляться действию химически агрессивной среды, вызывающие их разрушение (изменение первоначальных свойств):

растворимость, коррозионная стойкость, химическая активность, стойкость против гниения, твердение.

• ФИЗИЧЕСКИЕ:

плотность, пористость, влажность, влагоотдача, теплопроводность....

• МЕХАНИЧЕСКИЕ:

прочность, упругость, пластичность, жёсткость, твёрдость, хрупкость, сопротивление удару.

• ТЕХНОЛОГИЧЕСКИЕ:

удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

§2. Химические свойства материалов

Характеризуют его *способность* <u>вступать</u> в <u>реакцию</u> с *различными* <u>веществами</u>.

Например:

- •*вяжущих* с <u>водой,</u> или
- •материалы *противостоят* воздействию *агрессивных* веществ из окружающей среды.

2.1. Растворимость

- *Способность* материала <u>растворяться</u> в том или ином растворителе.
- Если материал под действием растворителя *ухудшает* свои <u>свойства</u> пли разрушается *отрицательный* фактор.
- Если используется как *составная* <u>часть</u> ТЕХНОЛОГИИ при изготовлении мастик положительный фактор.

2.2. Коррозионная стойкость

Способность материала сохранять свои свойства в условиях агрессивной среды (вода (пресная и морская), газы, растворы кислот, щелочей и солей, а также органические растворители).

Способность

сопротивляться

действию кислот,

НЕ изменяя своих
свойств.

Кислотостойкость

своиств.

Соли сильных кислот (азотной, соляной), некоторые полимерные м-лы, спец керамические плитки.

Способность
противостоять
действию щелочей,
сохраняя свои
свойства.

Щелочестойкость

Пигменты (охра, умбра и др.) при устройстве мозаичных покрытий или полов типа брекчия.

Газостойкость
Способность
материала *НЕ*вступать в реакцию
с газами
окружающей среды

Материалы для облицовки должны быть стойкими, в основном, к углекислому газу и сероводороду

- □Коррозия РАЗРУШЕНИЕ, которое вызывается химическими и электрохимическими процессами, при взаимодействии с внешней средой.
- □Коррозии ПОДВЕРГАЮТСЯ:
 - •металлы,
 - •каменные материалы, бетон,
 - •пластмассы,
 - древесина.
- **Пинасти изменениями**:
 - •не столько химическими,
 - •сколько физико-механическими характеристик материалов.

Из химических свойств для строителя главное:

- коррозионная стойкость;
- •химическая <u>активность</u> (например, для материалов, используемых как связующее (цемент, синтетические смолы).

2.3. Химическая активность

Химическая активность вяжущих веществ (минеральных добавок) зависит от:

Их состава и строения (т. е. от активности составляющих их молекул)

От *тонкости* измельчения

Химические процессы протекают либо при непосредственном контакте веществ друг с другом (т.е. на их поверхности), либо при растворении веществ (с поверхности). Чем БОЛЬШЕ поверхность вещества, тем АКТИВНЕЕ оно в химическом отношении. Поверхность увеличивается при увеличении степени измельчения его частиц.

§3. Физические свойства материалов

Свойство	Особенность	
1)ПЛОТНОСТЬ	Средняя	
	Насыпная	
	Истинная	
	Относительная	
2)ПОРИСТОСТЬ		
3)ВЛАЖНОСТЬ		
4)ВОДООТДАЧА		
5)ВОДОПОГЛОЩЕНИЕ	Массовое	
	Объемное	
6)ГИГРОСКОПИЧНОСТЬ		

3.1. Плотность

СРЕДНЯЯ ПЛОТНОСТЬ ρ_{θ}

массы m, единицы объёма V_1 абсолютно сухого материала в естественном состоянии (г/см³, кг/л, кг/м³).

НАСЫПНАЯ ПЛОТНОСТЬ СЫПУЧИХ МАТЕРИАЛОВ $\rho_{_H}$ массы m, единицы объёма $V_{_H}$ просушенного свободно насыпанного материала (г/см³, кг/л, кг/м³).

ИСТИННАЯ ПЛОТНОСТЬ ρ массы m, единицы объёма V материала в абсолютно плотном состоянии $(\Gamma/cm^3, \kappa\Gamma/л, \kappa\Gamma/m^3)$.

ОТНОСИТЕЛЬНАЯ плотность $\rho(\%)$ – степень заполнения объёма материала твёрдым веществом.

(ОТНОШЕНИЕ

- •общего объёма твёрдого вещества V в материале КО всему объёму материала $V_{_{I}}$ или
- •средней плотности материала $ho_{_{ heta}}$ К её истинной плотности ho)

$$\rho = \left(\frac{V}{V_1}\right) \cdot 100$$

или

$$\rho = \left(\frac{\rho_0}{\rho}\right) \cdot 100$$

3.2. Пористость

Степень заполнения объёма материала

порами, пустотами, газо-воздушными включениями

Для твёрдых материалов:

Для сыпучих:

$$\Pi = \left[\frac{(\rho - \rho_0)}{\rho} \right] \cdot 100 \qquad \Pi = \left[\frac{(\rho - \rho_n)}{\rho} \right] \cdot 100$$

$$\Pi = \left[\frac{(\rho - \rho_{_{H}})}{\rho}\right] \cdot 100$$

Средняя плотность ρ_0 Истинная плотность ρ Насыпная плотность ρ_u

3.3. Влажность *W*(%)

абсолютно сухом состоянии т:

$$W = \left\lceil \frac{(m_1 - m)}{m} \right\rceil \cdot 100$$

3.4. Влагоотдача

Способность материала отдавать влагу.

3.5. Водопоглощение (В)

Характеризует способность материала при *соприкосновении* с водой впитывать и удерживать её в своей массе.

МАССОВОЕ водопоглощение (%) – отношение массы поглощённой материалом воды $m_{_{\it 6}}$ к массе материала в абсолютно сухом состоянии m:

ОБЪЁМНОЕ водопоглощение (%) — отношение объёма поглощённой материалом воды т / р к его объёму в

<u>водонасыщенном</u>

$$B_{\scriptscriptstyle H} = \left(\frac{m_{\scriptscriptstyle B}}{m}\right) \cdot 100 \quad B_{\scriptscriptstyle O} = \left[\frac{{\rm coctoghum}}{(\rho_{\scriptscriptstyle B} \cdot V_{\scriptscriptstyle 2})}\right] \cdot 100$$

3.6. Гигроскопичность

Способность материала поглощать влагу из окружающей среды и сгущать её в массе материала

§4. Механические свойства материалов

4.1. Предел прочности (сжатия, растяжения, изгиба)

При сжатии R

Отношение разрушающей нагрузки P(H) к площади сечения образца F (см²).

Зависит от: размеров образца, скорости приложения нагрузки, формы образца, влажности.

При растяжении R

Отношение <u>разрушающей нагрузки</u> Р к первоначальной площади сечения образца F

При изгибе *R*

Определяют на специально изготовленных балочках.

- Способность материала после деформирования под воздействием каких-либо нагрузок принимать первоначальную форму и размеры.
- Наибольшее напряжение, при котором материал еще обладает упругостью предел упругости.
- К упругим материалам относят резину, сталь, древесину.

4.3. Пластичность

Свойство материала изменять под нагрузкой форму и размеры без образования разрывов и трещин и сохранять изменившиеся форму и размеры после удаления нагрузки.

Это свойство противоположно упругости.

К пластичным материалам относят битум, глиняное тесто и др.

4.4. Жёсткость

Свойство материала давать небольшие упругие деформации

4.5. Хрупкость

Под действием внешних сил мгновенно разрушаться без заметной пластичной деформации (кирпич, бетон, стекло и т. д.)

4.6. Твёрдость

Способность материала сопротивляться прониканию в него под ПОСТОЯННОЙ нагрузкой более твердого тела (стального шарика)

Важно при устройстве полов и дорожных покрытий

Шкала Мооса (минералогическая шкала твёрдости)

В 1811 году, немецким минералогом Фридрихом Моосом.

НАБОР *эталонных* <u>минералов</u> для *определения* <u>твёрдости</u> *методом* <u>царапания</u>

- В качестве <u>эталонов</u> приняты 10 МИНЕРАЛОВ, расположенных в порядке возрастающей ТВЁРДОСТИ.
- Твёрдость минерала измеряется путём поиска самого <u>твёрдого</u> эталонного <u>минерала</u>, который он <u>может поцарапать</u>; и/или самого <u>мягкого</u> эталонного минерала, который царапает данный минерал.
- Предназначена для *грубой* <u>сравнительной</u> *оценки* <u>твёрдости</u> материалов по системе мягче-твёрже.
- Испытываемый материал либо царапает эталон и его твёрдость по шкале Мооса выше, либо царапается эталоном и его твёрдость ниже эталона.
- Таким образом, шкала Мооса информирует только об относительной твёрдости минералов.

Шкала твердости Мооса

- 1. Тальк или мел. Легко чертится ногтем.
- 2. Гипс или каменная соль. Чертится ногтем.
- 3. Кальцит или ангидрит. Легко чертится стальным ножом.
- 4. Плавиковый шпат. Чертится стальным ножом под небольшим нажимом.
- 5. Апатит (сталь). Чертится стальным ножом под большим нажимом.
- 6. Полевой шпат. Слегка *царапает* <u>стекло</u>, стальным ножом не чертится.
- 7. Кварц. Легко чертит стекло, стальным ножом не чертится.
- 8. Топаз.
- 9. Корунд.
- 10. Алмаз.

§5. Технологические свойства

Способность материала к восприятию определенных технологических операций с целью изменения формы, размеров, характера поверхности, плотности,

5.1. Наиболее технологичные материалы

Нетрудно отформовать. Во время изготовления изделие можно уплотнить (вибрированием, трамбованием), оштукатурить и загладить.

Бетон (раствор)

Древесина Легко тесать, строгать, сверлить, распиливать, долбить, склеивать, шлифовать, окрашивать, соединять на гвоздях, шурупах, винтах, нагелях.

Обрабатывают в холодном, нагретом и расплавленном состоянии.

Металлы

- **Тлина** можно отформовать изделия любой формы => сушки и обжига => не размокающий в воде керамический каменный материал (прочный и долговечный).
- + Лакокрасочные материалы. Свойства:
- степень перетертости красок (чем больше, тем легче наносить),
- время и степень высыхания материала,
- условная вязкость, розлив,
- адгезия покрытия с поверхностью,
- способность покрытий шлифоваться и полироваться.

5.2. Удобоукладываемость

Важнейшее технологическое свойство строительного раствора легко укладываться тонким и плотным слоем на пористое основание и не расслаиваться при транспортировании, перекачивании насосами и хранении.

5.3. Теплоустойчивость

• <u>Теплоустойчивость</u> стен и перекрытий отапливаемых зданий (с целью сохранения температуры в помещении без резких колебаний при изменении теплового режима) зависит от <u>теплоемкости</u> материала

*Теплоемкость — свойство поглощать при нагревании тепло.

Количественно характеризуется удельной теплоемкостью

$$c=rac{Q}{m\Delta T},$$
 c — удельная теплоёмкость, Q — тепло, полученное веществом при нагреве (выделившееся при охлаждении), m — масса, ΔT — разность конечной и начальной температур

Удельная теплоемкость:

стали - 460, каменных материалов — 755...925; тяжелого бетона — 800...900; лесных материалов — 2380...2720.

5.4. Плавление

Огнеупорность — свойство материала противостоять длительному воздействию высоких температур не деформируясь и не расплавляясь

По огнеупорности разделяют на:			
Огнеупорные	Тугоплавкие	Легкоплавкие	
Выдерживают воздействие	Выдерживают	Огнеупорность	
температуры от 1580°С и	температуру	ниже 1350°C	
выше (продолжительно)	13501580°C		

НО! Огнестойкость — способность материала выдерживать действие высокой температуры без потери несущей способности (большого снижения прочности и значительных деформаций). Важно при пожарах!

§6. Радиационная стойкость

Свойство материала сохранять свою структуру и физикомеханические характеристики после воздействия ионизирующих излучений

Развитие атомной энергетики + широкое использование источников ионизирующих излучений в народном хозяйстве Может произойти глубокое изменение структуры материала (Уровни радиации м.б. велики)

- Необходимо оценить:
- -радиационную стойкость
- -защитные свойства материалов

Для защиты от нейтронного потока:

<u>Поток</u> радиоактивного излучения при встрече с материалом может *поглощаться* в разной степени <u>в</u> зависимости от :

- *толщины* <u>ограждения,</u>
- вида <u>излучения,</u>
- природы *вещества* <u>защиты</u>.
- •От **ү-**излучений материалы с большой плотностью (свинец, особо тяжелый бетон)
 - Уменьшить интенсивность проникания нейтронного излучения через бетон можно путем введения в него специальных добавок (бора, кадмия, лития).
 - •Применяют материалы, содержащие в большом количестве *связанную воду*;

Связанная вода

Часть подземных вод, физически или химически удерживаемая твёрдым веществом горной породы.

- •Неподвижна или слабо подвижна.
- •Бывает в твёрдом веществе породы и в порах.
- •Удерживается за счёт электростатических сил.

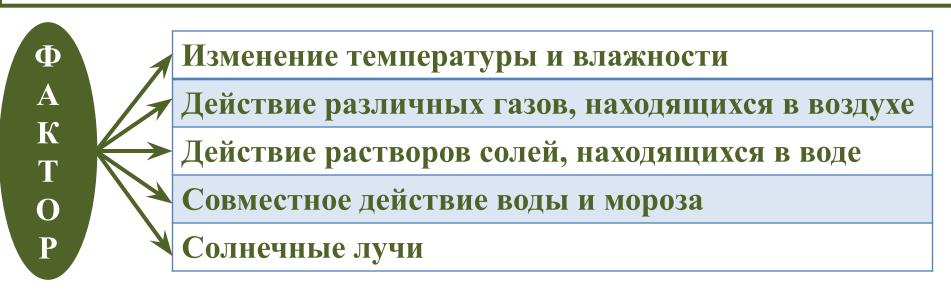
Содержится в тонкодисперсных, глинистых породах, характеризующихся очень мелкими порами и большой поверхностью частиц.

гидратные бетоны, лимонитовая руда (водный оксид железа) и др.

Справочно

- •Гидратными бетоны с большим содержанием связанной воды.
- •Носителями связанной воды в этих бетонах являются:
- -вяжущие (портландцемент, гипсоглиноземистый, глиноземистый и магнезиальный цементы),
- -заполнители (лимонит, гематит, серпентинит),
- -специальные добавки, содержащие легкие элементы (водород,

литий, гелий, кадмий),


-боросодержащие вещества.

Лимонитовая руда

§7.Долговечность материала

Способность сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации.

Потеря материалом свойств может происходить в результате:
-образования трещин,
-обменных реакций с веществами внешней среды,
-изменения состояний вещества (кристаллической решетки,
перехода из аморфного в кристаллическое состояние...).

Природные каменные материалы

§1. Классификация и основные виды горных пород

1.1. Классификация горных пород

По геологической классификации:

1)Изверженные (первичные)

2)Осадочные (вторичные)

3)Метаморфические (видоизменённые)

1)Изверженные (первичные)

Образовались при остывании поднявшейся из глубин земли расплавленной магмы.

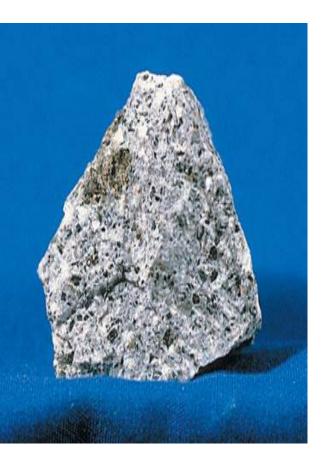
Строения и свойства зависят от условия остывания магмы

Глубинные горные породы

Медленное остывание магмы в глубине земной коры при больших давлениях вышележащих слоёв => Плотная зернисто-кристаллическая структура, большая и средняя плотность =>

предел прочности при сжатии.

уводопоглащение морозостойкость.

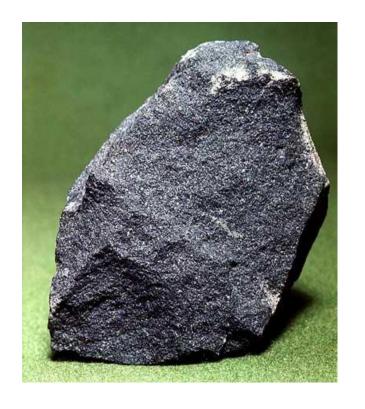

Излившиеся породы

Выход магмы на земную поверхность.

Быстрое и неравномерном охлаждении.

Наиболее распространённые излившимися породами являются *порфир, диабаз, базальт*, вулканические *рыхлые породы*.

Плубинные горные породы (Гранит, сиенит, диорит, га́ббро и др.)


Сиенит

Сиенит. Сиена, греческое название древнеегипетского города Сун, ныне Асуан. **Диагностика.** В отличие от гранита «не блестит» - мало кварца.

Разновидности. Если кварца > 5 % - кварцевый сиенит.

Цвет. Светлоокрашенные, сероватые, розоватые.

Месторождения. Украина (Волынская область), Урал, Казахстан, Кавказ, Средняя Азия, США, Канада, Германия, Норвегия и др. Сиенитами сложены знаменитые Красноярские столбы.

Диорит

Цвет. Обычно тёмно-зеленый или коричнево-зеленый.

Месторождение

Северная Америка (Кордильеры), Великобритания, Казахстан, Урал

Габбро


Цвет. Чёрная, тёмно-зелёная, иногда — пятнистая.

Месторождения. Северная Америка, Великобритания, ЮАР, Франция, Шотланд ия, Карелия, Урал, Кольский полуостров, Закавказье, Украина и др.

Излившиеся породы

Порфир применяли для изготовления статуй, в качестве украшений

Диабаз (устаревш.) полнокристаллические мелкозернистые породы (аналог базальта). В н. в. используется термин «**Долерит**»

2)Осадочные (вторичные)

Образовались из первичных (изверженных) под воздействием температурных перепадов, солнечной радиации, воды, атмосферных газов ...

Обломочные (рыхлые) породы: гравий, щебень, песок, глина.

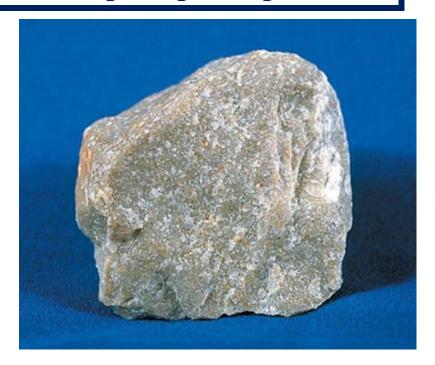
Химические осадочные породы: известняк, доломит, гипс.

Органогенные породы: известняк-ракушечник, диатомит, мел.

Доломит

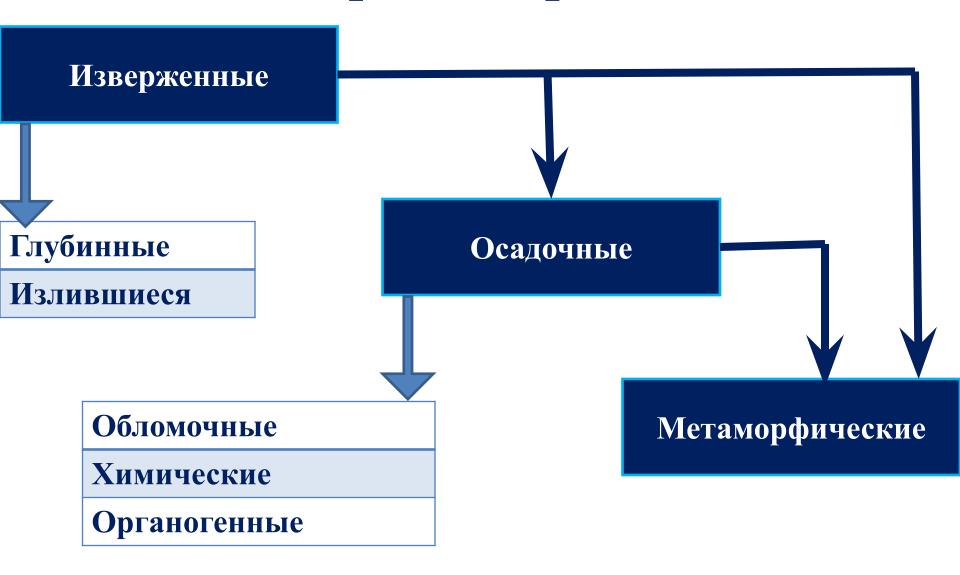
Известняк-ракушечник

Диатомит


3) Метаморфические (видоизменённые)

Образовались *из* <u>изверженных</u> и <u>осадочных</u> горных пород под влиянием *высоких* <u>температур</u> и *высоких* <u>давлений</u> в *процессе* <u>поднятия и опускания</u> земной <u>коры</u>

К ним относят: глинистый сланец, мрамор, кварцит.



Глинистый сланец, Монтана, США

Кварцит

Горные породы

1.2. Породообразующие минералы

Часть природных минералов принимает основное участие в образовании горных пород (породообразующие).

1.2.1. Входят в состав Изверженных

Кварц

Стоек к действию кислот, обладает высокой атмосферо стойкостью

При температуре 18...20°С не реагирует с известью

В среде насыщенного водяного пара, при температуре 150...200 ° С вступает в реакцию с известью => искусственные каменные материалы - силикатные

При температуре 1710 °C кварц плавится, образуя после быстрого остывания кварцевое стекло

Наиболее распространенный минерал земной коры

Кварц

Полевые шпаты

Имеют плоскости спайности => легко раскалываются по ним Ортоклазы - прямо раскалывающиеся плагиоклазы — косо Твердость их равна 6

Легко выветриваются (по сравнению с кварцем), т. е. под действием атмосферы (влаги углекислого газа) разрушаются.

Отличаются различной окраской

Ортоклаз

Слюды

Два вида: биотит и мусковит

В *биотите* содержатся примеси (оксида магния и железа) - <u>непрозрачен</u> и имеет темный (черный) цвет.

Мусковит прозрачен, так как не имеет этих примесей.

Слюды легко расщепляются на тонкие упругие пластинки, что характеризует их совершенную спайность

Железисто-магнезиальные минералы

Пироксены (Авгит) Амфиболы (Роговая обманка) Оливин

В основном - это силикаты магния и железа

Обладают высокой ударной вязкостью и стойкостью против выветривания

Имеют темную окраску зеленого, бурого, и черного цвета

1.2.2. Входят в состав Осадочных

Кальцит (Известковый шпат)

Наиболее распространенный минерал земной коры

Растворим в воде, бурно реагирует с кислотами.

Твердость 3

Магнезит

Встречается в природе значительно реже

Имеет несколько большую твердость и меньшую растворимость, чем кальцит

Доломит

По физическим свойствам аналогичен магнезиту

Гипс

Пластинчатого, волокнистого, зернистого строения, твердость 2 легкой растворимостью в воде

§2. Природные каменные материалы (Классификация и основные виды)

Получают путём обработки горных пород.

Рваный камень
(бут) —
добывают
взрывным
способом

2.1. По способу получения

<u>Грубоколотый</u>
<u>камень</u> —
получают
раскалыванием
без обработки

<u>Дроблёный</u> — получают дроблением (щебень, искусственный песок)

<u>Сортированный</u> <u>камень</u> (булыжник, гравий

2.2. По форме

Камни неправильной формы

Правильной формы (штучные изделия)

щебень, гравий

плиты, блоки

Щебень

•Остроугольные куски горных пород размером от 5 до 70 мм, получаемые при механическом или природном дроблении бута (рваный камень) или естественных камней.

<u>Прочность</u> определяется <u>по дробимости</u> при сжатии (раздавливании) в цилиндре.

По прочности подразделяется на марки:

- •Из изверженных пород 1400, 1200, 1000, 800 и 600;
- •Из осадочных и метаморфических пород 1200, 1000, 800, 600, 400, 300 и 200.
- •Высшая категория: > 600 из осадочных, > 800 из изверженных и метаморфических

Кроме того, щебень, предназначенный для строительства автомобильных дорог, характеризуется износом в полочном барабане. По этому показателю установлено четыре марки щебня: И-1, И-П, И-Ш и И-IV.

В зависимости от назначения качество щебня определяют по следующим показателям: гранулометрическому составу, форме зерен, содержанию зерен слабых пород, наличию пылевидных и глинистых частиц, прочности и морозостойкости; кроме того, по петрографической характеристике плотности: истинной (без пор), средней (включая поры), насыпной (включая поры и межзерновые пустоты); пористости, пустотности и водопоглощению

Используют в качестве крупного заполнителя для приготовления бетонных смесей, устройства оснований.

Гравий

•Окатанные куски горных пород размером 5 до 70 (120) мм,

Также используется для приготовления искусственных гравийно-щебёночных смесей.

Песок

- •Рыхлая масса, состоящая из зерен минералов и пород размером 0,16...5 мм.
- В зависимости от минералогического состава различают пески.:
- -кварцевые,
- -полевошпатовые,
- -карбонатные.

Применяют для:

приготовления растворов и бетонов, устройства оснований дорожных покрытий, дренажных сооружений.

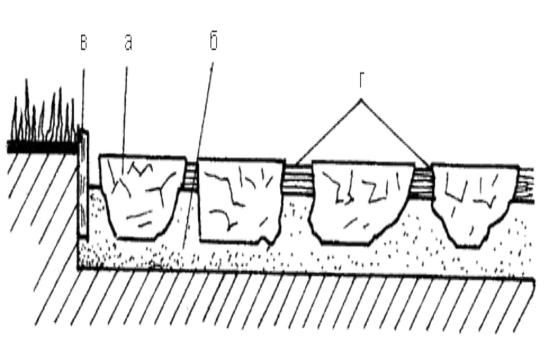
2.3. Облицовочные плиты и камни

•Изготовляют путем раскалывания или распиливания блоков-полуфабрикатов

Фактура лицевой поверхности:

- •<u>Полированная,</u> (гранит, мрамора, брекчия) <= обработка полировочным порошком с *накаткой* <u>глянца;</u>
- •*<u>Лощеная</u>* —шлифовальный порошок без накатки глянца;
- •<u>Шлифовальна</u>я шлифованием абразивными инструментами лицевой поверхности плит, (гранита, сиенита, и др.);
- •<u>Пиленая</u> распиливанием на канатных пилах или распиловочных станках с прямолинейным движением рамы;
- •*Точечная* обработкой крестовой бучардой;
- •<u>Бороздчатая</u> —пластинчатой бучардой или катучей фрезой;
- •<u>Рифленая</u> обработкой фрезой.

2.4. Брусчатка

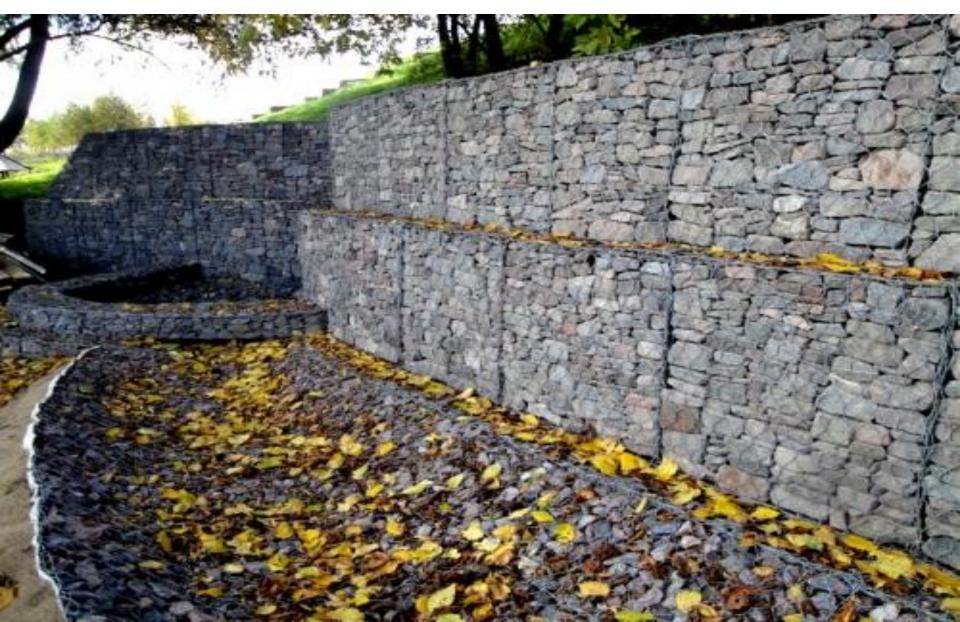

•Колотые или тесаные бруски высотой 10...16 см, шириной 12...15 см, длиной 15...25 см, по форме близки к параллелепипеду, лицевая поверхность - прямоугольник.

При устройстве мостовых (особенно -при крутых подъемах и спусках), трамвайного полотна и пр.

2.5. Колотый булыжный камень

- •По форме близок к многогранной призме или усеченной пирамиде с площадью лицевой поверхности 100, 200 и 400 см2 при соответствующей высоте 16, 20 и 30 см.
- •Лицевая поверхность и постель должны быть параллельны.
- •На боковых гранях не должно быть выступов, препятствующих плотному примыканию к другому камню.

Профиль из колотого булыжника с расшивкой раствором:


а – колотый булыжник;

 $6-neco\kappa$;

в – бордюр;

г – расшивка раствором

Для укрепления откосов земляных покрытий и оснований

§ 4. Методы защиты природных каменных материалов от разрушения

Разрушаются при:

- -переменном действии воды и мороза.
- -если горная порода состоит из нескольких минералов, то разрушение ее может происходить от изменения температуры вследствие того, что коэффициент линейного расширения разных минералов не одинаков.
- -действии воды как растворителя, содержащая углекислоту, и другие кислотные соединения.

Предотвратить проникновение воды и ее растворов в материал

Применяют ФЛЮАТЫ => образуются нерастворимые в воде соли => закрывают поры в камне.

- От воздействия углекислоты и образования сульфатов:
- облицовочные камни предохраняют путем *пропитки* их на <u>глубину до 1 см</u> горячим <u>льняным маслом</u>.
- Для предохранения от проникновения воды поверхность:
 - -покрывают слоем раствора воска в скипидаре,
- -парафина в легком нефтяном дистилляте или каменноугольном дегте.

Конструктивные меры:

- Путем образования хорошего стока воды с поверхности камня,
- Придания камню гладкой поверхности и т. д.