
CS 331, Principles of
Programming Languages

Introduction

Objectives

• To introduce several different paradigms of
programming
– But isn’t one language pretty much like

another? No!
• To gain experience with these paradigms by

using example programming languages
• To understand concepts of syntax,

translation, abstraction, and implementation

Paradigms of Programming?

• There are several ways to think about
computation:
– a set of instructions to be executed
– a set of expressions to be evaluated
– a set of rules to be applied
– a set of objects to be arranged
– a set of messages to be sent and received

Some Programming Paradigms

• Procedural
– examples: C, Pascal, Basic, Fortran

• Functional
– examples: Lisp, ML

• Object-oriented
– examples: C++, Java, Smalltalk

• Rule-based (or Logic)
– example: Prolog

Why so many?

• Most important: the choice of paradigm
(and therefore language) depends on how
humans best think about the problem

• Other considerations:
– efficiency
– compatibility with existing code
– availability of translators

Models of Computation

• RAM machine
– procedural

• directed acyclic graphs
– Smalltalk model of O-O

• partial recursive functions
– Lisp and ML

• Markov algorithms
– Prolog is loosely based on these

Lots of Languages

• There are many programming languages out there
• Lots of other PL-like objects

– document languages, e.g. LaTeX, Postscript
– command languages, e.g. bash, MATLAB
– markup languages, e.g. HTML and XML
– specification languages, e.g. UML

Issues for all Languages

• Can it be understood by people and
processed by machines?
– although translation may be required

• Sufficient expressive power?
– can we say what needs to be said, at an

appropriate level of abstraction?

Translation

• Compilation
– Translate into instructions suitable for some

other (lower level) machine
– During execution, that machine maintains

program state information
• Interpretation

– May involve some translation
– Interpreter maintains program state

Trade-offs

• Compilation
– lower level machine may be faster, so programs

run faster
– compilation can be expensive
– examples: C (and Java?)

• Interpretation
– more ability to perform diagnostics (or

changes) at run-time
– examples: Basic, UNIX shells, Lisp

