
Programming Paradigms

• Procedural

• Functional

• Logic

• Object-Oriented

Specifying the WHAT

• Describe the Inputs
– Specific values
– Properties

• Describe the Outputs (as above)
• Describe the Relationships Between I x O
– As a possibly infinite table
– Equations and other predicates between input

and output expressions
– For a given input, output may not be unique

Specifying the HOW

• Describe the Inputs
– Specific values
– Properties

• Describe HOW the Outputs are produced
• Models of existing computers
– Program State
– Control Flow

• A Few Abstractions
– Block Structure
– Recursion via a Stack

Procedural programming

• Describes the details of HOW the results are to be obtained, in terms of
the underlying machine model.

• Describes computation in terms of
– Statements that change a program state
– Explicit control flow

• Synonyms
– Imperative programming
– Operational

• Fortran, C, …
– Abstractions of typical machines
– Control Flow Encapsulation

• Control Structures
• Procedures

– No return values

• Functions
– Return one or more values

• Recursion via stack

Procedural Programming: State

• Program State
– Collection of Variables and their values

– Contents of variables change

• Expressions
– Not expected to change Program State

• Assignment Statements

• Other Statements

• Side Effects

C, C++, C#, Java

• Abstractions of typical machines
• Control Flow Encapsulation
– Control Structures
– Procedures

• No return values

– Functions
• Return one or more values

– Recursion via stack

• Better Data Type support

Illustrative Example

• Expression (to be computed) : a + b + c

• Recipe for Computation
– Account for machine limitations

– Intermediate Location
• T := a + b; T := T + c;

– Accumulator Machine
• Load a; Add b; Add c

– Stack Machine
• Push a; Push b; Add; Push c; Add

Declarative Programming

• Specifies WHAT is to be computed abstractly

• Expresses the logic of a computation without
describing its control flow

• Declarative languages include
– logic programming, and

– functional programming.

• often defined as any style of programming
that is not imperative.

Imperative vs Non-Imperative

• Functional/Logic style clearly separates WHAT
aspects of a program (programmers’
responsibility) from the HOW aspects
(implementation decisions).

• An Imperative program contains both the
specification and the implementation details,
inseparably inter-twined.

Procedural vs Functional

• Program: a sequence of
instructions for a von
Neumann m/c.

• Computation by
instruction execution.

• Iteration.

• Modifiable or updatable
variables..

• Program: a collection of
function definitions
(m/c independent).

• Computation by term
rewriting.

• Recursion.

• Assign-only-once
variables.

Functional Style : Illustration

• Definition: Equations
sumto(0) = 0
sumto(n) = n + sumto(n-1)

• Computation: Substitution and Replacement
sumto(2) = 2 + sumto (2-1)

= 2 + sumto(1)
= 2 + 1 + sumto(1-1) = 2 + 1 + sumto(0)
= 2 + 1 + 0 = …
= 3

Paradigm vs Language

Imperative Style

tsum := 0;
i := 0;
while (i < n) do

i := i + 1;
tsum := tsum + I

od

Storage efficient

Functional Style

func sumto(n: int): int;
 if n = 0
 then 0
 else n + sumto(n-1)

fi
 endfunc;

No Side-effect

Bridging the Gap

• Imperative is not always faster, or more memory
efficient than functional.

• E.g., tail recursive programs can be automatically
translated into equivalent while-loops.

 func xyz(n : int, r : int) : int;

 if n = 0

then r

 else xyz(n-1, n+r)

fi

 endfunc

Analogy: Styles vs Formalisms

• Iteration

• Tail-Recursion

• General Recursion

• Regular Expression

• Regular Grammar

• Context-free Grammar

Logic Programming Paradigm

1. edge(a,b).

2. edge(a,c).

3. edge(c,a).

4. path(X,X).

5. path(X,Y) :- edge(X,Y).

6. path(X,Y) :- edge(X,Z), path(Z,Y).

Logic Programming

• A logic program defines a set of relations.

• This “knowledge” can be used in various ways
by the interpreter to solve different “queries”.

• In contrast, the programs in other languages

• Make explicit HOW the “declarative
knowledge” is used to solve the query.

 Append in Prolog

• append([], L, L).

• append([H | T], X, [H | Y]) :-

• append(T, X, Y).

• True statements about append relation.

• Uses pattern matching.
– “[]” and “|” stand for empty list and cons

operation.

Different Kinds of Queries

• Verification
– append: list x list x list

• append([1], [2,3], [1,2,3]).

• Concatenation
– append: list x list -> list

• append([1], [2,3], R).

More Queries

• Constraint solving
– append: list x list -> list

• append(R, [2,3], [1,2,3]).

– append: list -> list x list
• append(A, B, [1,2,3]).

• Generation
– append: -> list x list x list

• append(X, Y, Z).

Object-Oriented Style

• Programming with Abstract Data Types
– ADTs specify/describe behaviors.

• Basic Program Unit: Class
– Implementation of an ADT.

• Abstraction enforced by encapsulation..

• Basic Run-time Unit: Object
– Instance of a class.

• Has an associated state.

Procedural vs Object-Oriented

• Emphasis on procedural
abstraction.

• Top-down design;
Step-wise refinement.

• Suited for programming
in the small.

• Emphasis on data
abstraction.

• Bottom-up design;
Reusable libraries.

• Suited for programming
in the large.

Integrating Heterogeneous Data

• In C, Pascal, etc., use

• Union Type / Switch Statement

• Variant Record Type / Case Statement

• In C++, Java, Eiffel, etc., use

• Abstract Classes / Virtual Functions

• Interfaces and Classes / Dynamic Binding

Comparison : Figures example

• Data
– Square

• side

– Circle
• radius

• Operation (area)
– Square

• side * side

– Circle
• PI * radius * radius

• Classes
– Square

• side

• area

• (= side * side)

– Circle
• radius

• area

• (= PI*radius*radius)

Adding a new operation

• Data

• ...

• Operation (area)

• Operation (perimeter)
– Square

• 4 * side

– Circle
• 2 * PI * radius

• Classes
– Square

• ...

• perimeter

• (= 4 * side)

– Circle
• ...

• perimeter

• (= 2 * PI * radius)

Adding a new data representation

• Data
– ...

– rectangle
• length

• width

• Operation (area)
– ...

– rectangle
• length * width

• Classes
– ...

– rectangle
• length

• width

• area

• (= length * width)

Procedural vs Object-Oriented

• New operations cause additive changes in
procedural style, but require modifications to
all existing “class modules” in object-oriented
style.

• New data representations cause additive
changes in object-oriented style, but require
modifications to all “procedure modules”.

Object-Oriented Concepts

• Data Abstraction (specifies behavior)

• Encapsulation (controls visibility of names)

• Polymorphism (accommodates various
implementations)

• Inheritance (facilitates code reuse)

• Modularity (relates to unit of compilation)

Example : Role of interface in
decoupling

• Client
– Determine the number of elements in a collection.

• Suppliers
– Collections : Vector, String, List, Set, Array, etc

• Procedural Style
– A client is responsible for invoking appropriate supplier

function for determining the size.
• OOP Style

– Suppliers are responsible for conforming to the standard
interface required for exporting the size functionality to a
client.

Client in Scheme

• (define (size C)
(cond

((vector? C) (vector-length C))
((pair? C) (length C))
((string? C) (string-length C))
(else “size not supported”))))

• (size (vector 1 2 (+ 1 2)))
• (size ‘(one “two” 3))

Suppliers and Client in Java

Interface Collection {int size(); }
class myVector extends Vector

implements Collection {
}

class myString extends String
implements Collection {
public int size() { return length();}
}

class myArray implements Collection {
 int[] array;
 public int size() {return array.length;}

}

Collection c = new myVector(); c.size();

