
Practical Implementation of SH Lighting and
HDR Rendering on PlayStation 2

Yoshiharu Gotanda 　 Tatsuya Shoji
Research and Development Dept. tri-Ace Inc.

This slide

• includes practical examples about
– SH Lighting for the current hardware (PlayStation 2)
– HDR Rendering
– Plug-ins for 3ds max

SH Lighting gives you…

• Real-time
Global
Illumination

SH Lighting gives you…

• Soft shadow (but not accurate)

SH Lighting gives you…

• Translucent
Materials

HDR Rendering gives you…

• Photo-realistic Light Effect

Original Scene

Bloom Effect added

HDR Rendering gives you…

• Photo-realistic Sunlight Effect

Original Scene

Sunlight and Bloom Effect added

HDR Rendering gives you…

• Photo-realistic Depth
of Field Effect
– adds depth to images

SH and HDR give you…

• Using both techniques shows the
synergistic effect

GI without HDR

GI with HDR

Where to use SH and HDR

• Don’t have to use all of them
– SH lighting could be used to represent

various light phenomena
– HDR Rendering could be used to represent

various optimal phenomena as well
– There are a lot of elements (backgrounds,

characters, effects) in a game
– It is important to let artists express

themselves easily with limited resources for
each element

Engine we’ve integrated

• Lighting specification (for each
object)
– 4 vertex directional lights (including

pseudo point light, spot light)
– 3 vertex point lights
– 2 vertex spot lights
– 1 ambient light (or hemi-sphere light)
Light usage is automatically determined by the engine

Engine we’ve integrated

• Lighting Shaders
– Color Rate Shader (light with

intensity only)
– Lambert Shader
– Phong Shader

Engine we’ve integrated

• Custom Shaders (up to 4 shaders you can choose for each
polygon)
– Physique Shaders (Skinning Shader)
– Decompression Shaders
– Static Phong Shader
– Fur Shaders
– Reflection Shaders (Sphere, Dual-Paraboloid and so

on)
– Bump Map Shader
– Screen Shader
– Fresnel Shader
– UV Shift Shader
– Projection Shader
– Static Bump Map Shader

Rendering Pipeline

• Our engine has the following
rendering pipeline

Mesh Data Modifiers Custom Shaders

Lighting Shaders

Multi Texture Shader

Graphic Synthesizer

Memory CPU+VU0 VU1

Transformation

Rendering Pipeline

If a polygon has more than 2 textures, go
back to the Lighting Shader stage

Multi Texture
Shader

Transformation to screen space, fogging,
clipping and scissoring

Transform

They illuminate each vertexLighting Shaders

They are like the Vertex ShaderCustom Shaders

They can update any mesh data by
CPU+VU0(like skinning, morphing, color
animations and so on)

Modifiers

Polygon dataMesh Data

Where have we integrated?

• HDR :
– Adapting data for HDR -> Modifying mesh

data
– Applying HDR effects -> Post effect

• SH Lighting :
– Precomputing -> Plug-in for 3ds max
– Computing SH coefficients of lights -> CPU
– SH Shading -> Lighting Shaders

High Dynamic Range Rendering

Representing Intense Light

• Color (255,255,255) as maximum value
can't represent dazzle

• How about by a real camera?

Optical Lens Phenomena

• By camera - Various phenomena caused by light
reflection, diffraction, and scattering in lens and barrel

• These phenomena are called Glare Effects

Glare Effects

• Visible only when intense light
enters

• May occur at any time but are
usually invisible when indirect
from light sources because of
faintness

Depth of Field

• One of the optical phenomena but not a Glare
Effect

• DOF generally is used for cinematic pictures

Representing Intense Light
- Bottom Line
• Accurate reproduction of Glare Effects creates

realistic intense light representations

• Glare Effects reproduction requires highly
intense brightness level

• But the frame buffer ranges only up to 255

• Keep higher level on a separate buffer (HDR
buffer)

What is HDR?

• Stands for High Dynamic Range
• Dynamic Range is the ratio between

smallest and largest signal values
• In simple terms, HDR means a greater

range of value

• So HDR Buffers can represent a wide
range of intensity

Physical Quantity for HDR

25 : 1100-watt bulb vs Moonlight

250,000 : 1Sunlight vs Blue sky

40,000 : 1Sunlight vs 100-watt bulb

• For example, when you want to handle
sunlight and blue sky at the same time
accurately, int32 or fp32 are necessary
at least

Implementation of HDR Buffer on PS2

• PS2 has no high precision frame buffer - Have
to utilize the 8bit-integer frame buffer

• Adopt a fixed-point-like method to raise
maximum level of intensity instead of lowering
resolution
(When usual usage is described as “0:0:8",
describe it as “0:1:7" or “0:2:6" in this
method)

• Example: If representing regular white by 128,
255 can represent double intensity level of
white

• Therefore, this method is not true HDR

Mach-Band Issue

• Resolution of the visible domain gets
worse and Mach-Band is emphasized

• But with texture mapping, double rate
will be feasible

Mach-Band Issue

1x 2x 4x

Mach-Band Issue – with Texture

1x 2x 4x

Tone Mapping

• One of the processes in HDR Rendering
• It involves remapping the HDR buffer to the

visible domain

HDR image, visible image
and histogram of intensity

Tone Mapping

• Typical Tone Mapping curves are
nonlinear functions

Measurement value of digital camera (EOS 10D)

Real Light Intensity
Pixel Intensity

Red

Green

Blue

Average

Fitting

Tone Mapping on PS2

• But PS2 doesn't have a pixel
shader, so simple scaling and
hardware color clamping is used

Tone Mapping on PS2

• PS2's alpha blending can scale up about
six times on 1 pass
– dst = Cs*As + Cs

• Cs = FrameBuffer*2.0
• As = 2.0

• In practice, you will have a precision
problem, so use the appropriate alpha
operation:0-1x, 1-2x, 2-4x, 4-6x for
highest precision

Tone Mapping - Multiple Bands

• Multiple bands process to represent
nonlinear curves

Tone Mapping - Multiple Bands

• But in cases of more than two bands, it is necessary to
save the frame buffer and accumulate outcomes of
scaling; rendering costs will be much higher

• We don’t use Multiple Bands

Theory value

Actual 23.410.22.2

17.29.61.9

3 Bands2 BandsNo Band

Unit : HSYNC Frame Buffer size : 640x448

(Theory value is considered for only pixel-fill cycles)

Rendering costs

Glare Filters on PS2
• Rendering costs (Typical)

– Bloom 5-16Hsync
– Star (4-way) 7-13Hsync
– Persistence 1Hsync
(frame buffer size : 640x448)

Persistence

Bloom Star

Basic Topics for Glare Filters use

• Reduced Frame Buffer
• Filtering Threshold
• Shared Reduced Accumulation

Buffer

Reduced Frame Buffer

• Using 128x128 Reduced Frame Buffer
• All processes substitute this for the

original frame buffer

• The most important tip is to reduce to
half repeatedly with bilinear filtering to
make the pixels contain average values
of the original pixels

• It will improve aliasing when a camera
or objects are in motion

Filtering Threshold

• In practice, the filtering portion of
buffer that are over threshold values

• The threshold method causes color bias
that actual glare effects don't have

Actual Threshold method
applied

Result

Filtering Threshold

• This method could be an approximation
of a logarithmic curve for Tone Mapping ??

Pixel Intensity

Pow
er

Pixel Intensity

Pow
er

?

Shared Reduced ACC Buffer

• Main frame buffers take a large
area so fill costs are expensive

• Use the Shared Reduced
Accumulation Buffer to streamline
the main frame buffer once

Work Buffer List

• Buffer sizes depend on PSMCT32 Page unit
• Buffer sizes will be 128x96 or 128x72, an aspect ratio of

4:3 or 16:9, considering maximum allocation

Usage Size Scope

Reduced Frame
Buffer (source)

128x128 Glare Filters & DOF
(Shared with DOF)

Shared Reduced
ACC

128x128 Glare Filters

Bloom work 128x128 – 64x64 Temp.

Star Stroke work 256x256 – 64x16 Temp.

Persistence 64x32 Continuous

Bloom

• Using Gaussian Blur (Detail later)
• The work buffer size is 128x128 - 64x64

source

Subtract threshold value

Blur

Add

work work ACC

Frame Buffer

Bloom - Multiple Gaussian Filters
• Use Multiple Gaussian Filters
• MGF can reduce a blur radius compared with single

Gaussian. Specifically, it helps reduce rendering costs
and modifies filter characteristics

Single Gaussian
blur radius: 20 pixels

Multiple Gaussian (3 filters)
blur radii: 8, 4, 2 pixels

Bloom - Multiple Gaussian Filters

• Use 3 Gaussian filters in our case
• Radii are: 1st:40%, 2nd:20%, 3rd:10% of

single Gaussian

Blur radius (Pixel) 2 5 10 20

Single Gaussian 2.5 4.1 6.6 10.8

Multiple Gaussian 2.8 3.9 4.8 8.1
Unit : HSYNC Work Buffer Size : 128x128

Rendering costs

Star

• Create each stroke on the work buffer and then
accumulate it on the ACC Buffer

• Use a non-square work buffer that is reduced in the
stroke's direction to save taps of stroke creation

• Vary buffer height in order to fix the tap count

Rotate and
compress Create stroke

1st pass

4th pass

…. ….

Unrotate
and stretch

work ACC
source

Frame Buffer

Star Issue

• Can't draw sharp edges on Reduced
ACC buffer

• Copying directly from a work
buffer to the main frame buffer
can improve quality

• But fill costs will increase

Persistence

• Send outcomes of filtering to Persistence
Buffer as well as ACC Buffer

• Persistence Buffer size is 64x32
• A little persistence sometimes improves

aliasing in motion

Bloom Result

Star Result

Persistence Buffer

Darken as
blending black
color every frame

Add

ACC

Frame Buffer

More Details for Glare Filters

• Multiple Gaussian Filters
• How to create star strokes
• and so on..

See references below
– Masaki Kawase. "Frame Buffer Postprocessing Effects in

DOUBLE-S.T.E.A.L (Wreckless)“ GDC 2003.
– Masaki Kawase. "Practical Implementation of High

Dynamic Range Rendering“ GDC 2004.

Gaussian Blur for PS2

• Gaussian Blur is possible on PS2
• It creates beautiful blurs
• Good match with Bilinear filtering

and Reduced Frame Buffer

Gaussian Blur

• Use Normal Alpha Blending
• Requires many taps, so processing on

Reduced Work Buffer is recommended
• Costs are proportional to blur radii
• Various uses:

– Bloom, Depth of Field, Soft Shadow, and so
on

Gaussian Filter on PS2

• Compute Normal blending
coefficients to distribute the pixel
color to nearby pixels according to
Gaussian Distribution

• Don’t use Additive Alpha Blending

Gaussian Filter on PS2
Example: To distribute 25% to both sides
　1st pass, blend 25% / (100%-25%)=33% to one side
　2nd pass, blend 25% to the other side

Original Pixels

Required Pixels

255 255 255

255

Shift to Left

Shift to Right

+

63 128 63

85 170

63 128 63

+

1st pass, Blend 33%

2nd pass, Blend 25%

Left Pixel : (0*(1-0.77) + 255 * 0.33) * (1-0.25) + 0 * 0.25 = 63
Right Pixel : 0 * (1-0.25) + 255 * 0.25 = 63

Gaussian Filter on PS2

• Gaussian Distribution can separate to X
and Y axis

• This way, you can blur an area of 3x3
(the radius of 1 pixel) with only 4 taps
of up, down, left and right

• Otherwise, blurring the area takes 9
taps

Gaussian Filter on PS2

• In addition, using bilinear filtering
you can blur 2 pixels once

• That is …
– 5x5 area with 4 taps
– 7x7 area with 8 taps
– 15x15 area with 28 taps
– …

Lack of Buffer Precision
• 8-bit integer does not have enough precision to blur a

wide radius. it can blur only about 30 pixels
• Precision in the process of calculations is preserved

when using Normal Blending, but it's not preserved when
using Additive Blending

Broken to X and Y axis
Blur radius : 40 pixels

Gaussian Filter Optimization

• Of course using VU1 saves CPU
• Avoiding Destination Page Break

Penalty of a frame buffer is
effective for those filters

• In addition, avoiding Source Page
Break Penalty reduces rendering
costs by 40%

Depth of Field

• Achievements of our system:
– Reasonable rendering costs:

• 8-24Hsync(typically), 35Hsync
• (frame buffer size : 640x448)

– Extreme blurs
– Accurate blur radii and handling by

real camera parameters
• Focal length and F-stop

Depth of Field

Depth of Field overview

• Basically, blend a frame image and a blurred
image based on alpha coefficients computed
from Z values

• Use Gaussian Filter for blurring
• Use reduced work buffers : 128x128 – 64x64

+ =

Multiple Blurred Layers

• There are at most 3 layers as the background
and 2 layers as the foreground in our case

• We use Blend and Blur Masks to improve some
artifacts

Hopping Issue with Layers

• But hopping tends to occur when using more than two
layers

• We usually use 1 BG and 1 FG layers or 1BG and 2FG
layers

Layer boundary

crosses the table

Formula for Blur Radius
• The optical formula for DOF below is acquired from The Thin

Lens Formula and the formulas for camera structure relativity

x: diameter of blur in projector (circle of confusion)
o: object distance
p: plane in focus
f: focal length
F: F-stop

Conversions of Frame Buffers

• DOF uses the conversions of frame
buffers below (details later)

– Swizzling Each Color Element from G
to A or A to G

– Converting Z to RGB with CLUT
– Shifting Z bits toward upper side

Pixel-Bleeding Artifacts

• With wider blurs, Pixel-Bleeding
Artifacts were fatally emphasized

Solved

Pixel-Bleeding Artifacts

• Solve it by blurring with a mask
• Use normal alpha blending so put

masks in alpha components of a
source buffer

• Gaussian Distribution is incorrect
near the borders of the mask but
looks OK

Edge on Blurred Foreground

• Generally, blurred objects in the
foreground have sharp edges

• Need to expand Blending Alpha
Mask for the foreground layers

Edge on Blurred Foreground

• But using the reduced Z buffer leaves the masks a little
blurred

• To expand or not is up to you

Not expanded Expanded

Expand Mask

• Our way also blurs and scales Blending Alpha
Mask but intermediate values are broken

• Maybe there are better ways of expanding
Blending Alpha Mask

Original Mask Blurring Scaling up & Clamping

Unexpected Soft Focus

• Appears among layers or between a layer and
the midground, or appears a little blurred

• Emphasized when a blur is wide

In focus Out of focusIntermediate

Unexpected Soft Focus

• One solution is to increase the
number of layers

• Another way is to put intermediate
values on the blurring mask

• But it causes incorrect Gaussian
blurring areas

Intermediate Mask of Gaussian

The apparent difference of depth with single
layer … a little better

With intermediate values Regular Gaussian

Intermediate Mask of Gaussian

The apparent distance of objects …
but with a slight dirty blur

With intermediate values Regular Gaussian

Intermediate Mask of Gaussian

Wider blur … oops!

With intermediate values Regular Gaussian

Unnatural Blur

• Gaussian Function is different from
a real camera blur

• The real blur function is more flat
• Maybe the difference will be

conspicuous using HDR values

Z Testing when Blending Layers

• Advantage
– Clearer edge with a reduced Z buffer

With Z test Without

Z Testing when Blending Layers

• Disadvantage
– Hopping results when objects cross the

borders of layers

Converting Flow Overview
• DOF flow
Frame Buffer Z & Color Reduced Frame Buffer Glare

Effects
flow

Blend & Blur Mask

blur Frame with Mask
Scale & Clamp

Blend to Frame Buffer

Background Layers

Foreground
Layers

blur Blend Mask

Reduce Z

CLUT Look up

Shift Z bit

Reduce Z
(Don’t Shift)

Converting Flow Overview
• Glare Effects flow

Darken Every Frame

Add to Frame
Buffer

Reduce Intensity Reduce Intensity

Create Star Strokes

Star

Persistenc
e Bloo
m Reduce size

Reduced Accumulation Buffer

Blur

Copy and Rotate

Swizzling Each Color Element
from G to A or A to G
• Look up a PSMCT32 page as a PSMCT16 page

16 pixels

Look up as PSMCT16

8 pixels

PSMCT32 Column
64 pixel

8 pixels

8 pixels

PSMCT32 Page

Block

Have to process at
every page.
Because PSMCT32
and PSMCT16 are
different in Block
Order in Page.

32
pixels

Swizzling Each Color Element
from G to A or A to G
• Copy with FBMSK

8 pixels
Result PSMCT32

Copy with FBMSK

 Mask Out
SCE_FRAME.FBMSK = 0x3FFF

Copy

Converting Z to RGB with CLUT

• Convert PSMZ24 to PSMCT32

Native PSMZ24 PSMCT32 Block order

Copy with
SCE_GS_SET_TEX0_1(srcTBP, width, PSMZ24, 10, 10, 1,0,0,0,0,0)

Converting Z to RGB with CLUT

• Look up as PSMT8
PSMCT32 2 Columns

PSMT8 2 Columns

Collect B(bit16-23) elements

Converting Z to RGB with CLUT

• Requires many tiny sprites such as
8x2 or 4x2, so it's inefficient if
creating on VU

• When converting a larger area,
using Tile Base Processing for
sharing a packet is recommended

Issue of Converting Z to RGB

• Use CLUT to convert Z to RGB, so it can take only upper 8-bit
from Z bits

• Upper Z bits tend not to contain enough depth because of bias
of a Z-buffer

• Solve by shifting bits of the Z-buffer to upper
• BETTER WAY is setting more suitable Near Plane or Far Plane

Not shifted Shifted

Shifting Z bits toward Upper Side

Step1 Save G of the Z-buffer in alpha plane
Step2 Add B the same number of times as shift bits

to itself for biasing B
Step3 Put saved G into lower B with alpha blending

(protect upper B by FBMASK of FRAME
register)

※ 24-bit Z-buffer case
B:17-23 bit G:8-16 bit R:0-7 bit

Outdoor Light Scattering

Outdoor Light Scattering

• Implementation of:
– Naty Hoffman, Arcot J Preetham. "Rendering Outdoor

Light Scattering in Real Time“ GDC 2002.

• Glare Effects and DOF work good enough
on Reduced Frame Buffer,
but OLS requires higher resolution, so
OLS tends to need more pixel-fill costs

• Takes 13-39Hsync (typically), 57Hsync

Outdoor Light Scattering

• Adopting Tile Base Processing
• High OLS fillrate causes a bottleneck, so computing

colors and making primitives are processed by VU1
during previous tile rendering

Create Tile0 Create Next Tile1

Kick Tile0

Additional Parameters

• 2nd Mie Coefficients
– Can represent more complex coloring
– No change to fill costs

Green color added by 2nd Mie

Additional Parameters

• Gamma
– It’s fake. It isn’t correct physically
– But it would be most useful

Gamma 0.68 Gamma 2.00

Additional Parameters

• Horizontal Slope & Gain
– Use the function from “Perez all weather luminance

model” with a modification

Theta : The angle formed by zenith and ray

g : gain

s : gradient

Additional Parameters

• Z bit Shift
– Is more important than using it with

DOF

Not Shifted

OLS - Episode

• Shifting Z bits causes a side effect where objects in the
foreground tend to be colored by clamping values

• Artists found and started shifting Z bits as color
correction, so we provided inexpensive emulation of
coloring

Spherical Harmonics Lighting

How to use SH Lighting easily?

• Use DirectX9c!
– Of course, we know you want to

implement it yourselves
– But SH Lighting implementation on

DirectX9c is useful to understand it
– You should look over its

documentation and samples

Reason to use SH Lighting on PS2

• Photo-realistic
lighting

Global Illumination
with Light Transport

Traditional Lighting with an
omni-directional light and
Volumetric Shadow

Reason to use SH Lighting on PS2

• Dynamic light

Reason to use SH Lighting on PS2

• Subsurface scattering

PRT

• Precomputed Radiance Transfer
was published by Peter Pike Sloan
et al. in SIGRAPH 2002
– Compute incident light from all

directions off line and compress it
– Use compressed data for illuminating

surfaces in real-time

What to do with PRT

• Limited real-time global
illumination
– Basically objects mustn't deform
– Basically objects mustn't move

• Limited B(SS)RDF simulation
– Lambertian Diffuse
– Glossy Specular
– Arbitrary (low frequency) BRDF

Limited Animation

• SH Light position can move or rotate
– But SH lights are regarded as infinite

distance lights (directional light)
• SH Light color and intensity can be

animated
– IBL can be used

• Objects can move or rotate
– But if objects affect each other, those

objects can’t move
• Because light effects are pre-computed!

SH

• Spherical Harmonics :
– are thought to be like a 2-dimensional

Fourier Transform in spherical coordinates
– are orthogonal linear bases
– This time, we used them for compression of

PRT data and representation of incident
light

where and

is an associated Legendre Polynomial

How is data compressed?

• PRT data is considered as a response
to rays from all directions in
3D-space

• Think of it as 2D-space, so as to
understand easily

How is data compressed?

•This is an example of
response to light from all
directions in 2D-space

•It is in circular coordinates

•Therefore it can be
expanded like this graph

How is data compressed?

• If there is a function like 2D Fourier
Transform in spherical coordinates; PRT
data can be compressed with it

•This function can be
represented by the
Fourier series (set of
infinite trig functions)

How is data compressed?

• You could think of Spherical
Harmonics as a 2D Fourier Transform
in spherical coordinates, so as to
understand easily

How data is compressed?

• Use lower order coefficients of SH
to compress data (It is like JPEG)

• Use this method for compression of
PRT data and light

Use some of these p coefficients
for object data

Illuminated color SH coefficients on a vertex of object

SH coefficients of light SH functions

Why use linear transformations?

• It is easy to handle with vector
processors
– A linear transformation is a set of dot

products (f = a*x0 + b*x1 + c*x2….)
– Use only MULA, MADDA and MADD

(PS2) to decompress data (and light
calculation)

• For the Vertex (Pixel) Shader, dp4 is
useful for linear transformations

Compare linear transformations

??easyHandiness for
artists

difficultdifficultpossibleSpecular
interreflection

supportsupportuseless (lots
of coef)

High frequency
(specular)

useless
(depends on
complexity)

jaggy (depends
on a basis)

soft (but
usable)

With few coef

variantvariantinvariantRotation

PCA basisWaveletSH

This comparison is based on current papers. Recent papers hardly
take up Spherical Harmonics, but we think it is still useful for game
engines

Details of SH we use

• It is tough to use SH Lighting on
PlayStation 2
– Therefore we used only a few

coefficients
– Coefficient format : 16bit fixed point

(1:2:13)
• PlayStation 2 doesn’t have a pixel

shader
– Only per-vertex lighting

Details of SH we use

2.001.579(16)2412SH : 2bands –
3chs

2.832.0721(28)3216SH : 4bands –
1ch

2.051.5613(20)189SH : 3bands –
1ch

1.371.056(13)84SH : 2bands –
1ch

1.001.0010(15)00Traditional
light

Actual size ratio
(Example with no
texture)

Actual
speed
ratio

Num of VU1
instructions

size of SH
data

Num of
coef

() including Secondary Light Shader

Secondary Light Shader does light clamping and calculation
of final color

Details of SH we use
• This is the SH Basis we use (Cartesian coordinate)

– SH[0] = 1.1026588 * x
– SH[1] = 1.1026588 * y
– SH[2] = 1.1026588 * z
– SH[3] = 0.6366202
– SH[4] = 2.4656168 * xy
– SH[5] = 2.4656168 * yz
– SH[6] = 0.7117635 * (3z^2 - 1)
– SH[7] = 2.4656168 * zx
– SH[8] = 1.2328084 * (x^2 – y^2)
– SH[9] = 1.3315867 * y(3x^2-y)
– SH[10] = 6.5234082 * yxz
– SH[11] = 1.0314423 * y(5z^2 – 1)
– SH[12] = 0.8421680 * z(5z^2 – 3)
– SH[13] = 1.0314423 * x(5z^2 – 1)
– SH[14] = 3.2617153 * z(x^2 – y^2)
– SH[15] = 1.3315867 * x(x^2 – 3y^2)

Details of SH we use

• Our SH Shader(2bands, 1ch) code for VU1
(Main loop is 6ops)
NOP LQ VF20, SHCOEF+0(VI00)
NOP LQ VF21, SHCOEF+1(VI00)
NOP LQ VF22, SHCOEF+2(VI00)
ITOF12 VF14, VF13 LQI VF13, (VI02++)
NOP LQ VF23, SHCOEF+3(VI00)
NOP IADDIU VI07, VI07, 1

tls1_loop:
MADDw.xyz VF30, VF23, VF15w LQI.xyz VF29, (VI03++)
MULAx.xyz ACC, VF20, VF14x MOVE.zw VF15, VF14
MADDAy.xyz ACC, VF21, VF14y ISUBIU VI07, VI07, 1
ITOF12 VF14, VF13 LQI VF13, (VI02++)
MADDAw.xyz ACC, VF29, VF00w IBNEVI07, VI00, tls1_loop
MADDAz.xyz ACC, VF22, VF15z SQ.xyz VF30, -2(VI03)

Details of SH we use
• Our SH Shader(3bands, 1ch) code for VU1 (Main loop is 13ops)

NOP LQI VF14, (VI02++)
NOP LQI VF15, (VI02++)
NOP LQ VF29, 0(VI03)
ITOF12 VF25, VF13 LQ VF16, SHCOEF+0(VI00)
ITOF12 VF26, VF14 LQ VF17, SHCOEF+1(VI00)
ITOF12 VF27, VF15 LQ VF18, SHCOEF+2(VI00)
MULAw.xyz ACC, VF29, VF00w LQ VF19, SHCOEF+3(VI00)

tls2_loop:
MADDAx.xyz ACC, VF16, VF25x LQ VF20, SHCOEF+4(VI00)
MADDAy.xyz ACC, VF17, VF25y LQ VF21, SHCOEF+5(VI00)
MADDAz.xyz ACC, VF18, VF25z LQ VF22, SHCOEF+6(VI00)
MADDAx.xyz ACC, VF19, VF26x LQ VF23, SHCOEF+7(VI00)
MADDAy.xyz ACC, VF20, VF26y LQ VF24, SHCOEF+8(VI00)
MADDAz.xyz ACC, VF21, VF26z LQI VF13, (VI02++)
MADDAx.xyz ACC, VF22, VF27x LQI VF14, (VI02++)
MADDAy.xyz ACC, VF23, VF27y LQI VF15, (VI02++)
MADDz.xyz VF30, VF24, VF27z LQ VF29, 1(VI03)
ITOF12 VF25, VF13 ISUBIU VI07, VI07, 1
ITOF12 VF26, VF14 NOP
ITOF12 VF27, VF15 IBNE VI07, VI00, tls2_loop
MULAw.xyz ACC, VF29, VF00w SQI.xyz VF30, (VI03++)

Details of SH we use

• Engineers think that SH can be
used with at least the 5th order (25
coefficients for each channel)

• Practically, artists think SH is
useful with even the 2nd order (4
coefficients)

• Artists will think about how to use
it efficiently

Differences in appearance

• The 2nd order is inaccurate
– However, it’s useful (soft shading)

• The 3rd and 4th are similar
– The 3rd is useful considering costs

Differences in appearance

• The number of channels
mainly influences color
bleeding
(Interreflection)

• The number of
coefficients mainly
influences shadow
accuracy

Differences in appearance

• For sub-surface scattering,
color channels tend to be
more important than the
number of coefficients

Harmonize SH traditionally

• We harmonize SH
Lighting with
traditional lights:
– There is a function by

which hemisphere light
coefficients come from
linear coefficients of
Spherical Harmonics

– For Phong (Specular)
lighting, we process
diffuse and ambient
with SH Shader, and
process specular with
traditional lighting

Side effects of SH Lighting

• Useful
– SH Lighting (Shading)

is smoother than
traditional lighting

– Especially, it is useful
for low-poly-count
models

– It works as a low
pass filter

Side effects of SH Lighting

• Disadvantage
– SH is an

approximation of
BRDF

– But using only a few
coefficients causes
incorrect
approximation

This point is darker
than actual

Green : Approx.

Blue : Actual

This point is brighter
than actual

Actual

Our precomputation engine

• supports :
– Lambert diffuse shading
– Soft-edged shadow
– Sub-surface scattering
– Diffuse interreflection
– Light transport (detail later)

Materials

• Basic settings
– SH coefficient setting
– Computation precision (Number of rays)
– Low Pass Filter settings
– Texture setting

• Diffuse settings
– Diffuse intensity

• Occlusion settings
– Occlusion emitter
– Occlusion receiver
– Occlusion opacity

Materials
• Interreflection settings

– Interreflection intensity
– Number of passes
– Interreflection low pass filter
– Color settings

• Translucent settings
– Enabling single scattering
– Enabling multi scattering
– Diffusion directivity
– Surface thickness
– Permeability
– Diffusion amount

• Light Transport settings

Algorithms for PRT

• Based on (Stratified) Monte Carlo
ray-tracing

PRT Engine [1st stage]

• Calculate diffuse and occlusion
coefficients by Monte Carlo
ray-tracing:
– Cast rays for all hemispherical

directions
– Then integrate diffuse BRDF with the

SH basis and calculate occlusion SH
coefficients (occluded = 1.0, passed =
0.0)

PRT Engine [2nd stage]

• Calculate sub-surface scattering
coefficients with diffuse
coefficients by ray-tracing
– We used modified Jensen’s model

(using 2 omni-directional lights) for
simulating sub-surface scattering

PRT Engine [3rd stage]

• Calculate interreflection
coefficients from diffuse and
sub-surface scattering coefficients:
– Same as computing diffuse BRDF

coefficients
– Cast rays for other surfaces and

integrate their SH coefficients with
diffuse BRDF

PRT Engine [4th stage]

• Repeat from the 2nd stage for
number of passes

• After that, Final Gathering (gather
all coefficients and apply a low
pass filter)

Optimize precomputation

• To optimize finding of rays and
polygon intersection, we used
those typical approaches (nothing
special)
– Multi-threading
– Using SSE2 instructions
– Cache-caring data

Optimize precomputation

• Multi-threading for every calculation
was very efficient
– Example result (with dual Pentium Xeon 3.0GHz)

2.12.22.01.81.0Speed
ratio

54321Number
of threads

Optimize precomputation

• SSE2 (inline assembler) for finding
intersections was quite efficient
– Example result (with dual Pentium Xeon 3.0GHz)

12.02.45.01.0Speed
ratio

BothSSE2 for
ray-polygon
intersection

SSE2 for
tree
traversal

No SSE2

Optimize precomputation

• File Caching System
– SH coefficients and object geometry

are cached in files for each object
– Use cache files unless parameters

are changed

What is the problem

• It is still slow to
maximize quality
with many rays
– Decreasing the

number of rays
causes noisy
images

– How to improve
quality without
many rays?

600rays for
each vertex

3,000rays for
each vertex

Solving the problem

• We used 2-stage low pass filters to
solve it
– Diffuse interreflection low pass filter
– Final low pass filter

Solving the problem

• We used Gaussian Filter for a low pass
filter
– Final LPF was efficient to reduce noise
– But it caused inaccurate result

• Therefore we used a pre-filter for
diffuse interreflection
– Diffuse interreflection LPF works as

irradiance caching
– Diffuse interreflection usually causes noisy

images
– Reducing diffuse interreflection noise is

efficient

Solving the problem

• Using too strong LPF causes inaccurate
images
– Be careful using LPF

3,000rays without LPF

(61seconds)

600rays with LPF

(22seconds)

Light Transport

• It is our little technique for expanding
SH Lighting Shader
– It is feasible to represent all frequency

lighting (not specular) and area lights
– BUT! Light position can't be animated
– Only light color and intensity can be

animated
– Some lights don’t move

• For example, torch in a dungeon, lights in a
house

• Particularly, most light sources in the
background don’t need to move

Details of Light Transport

• It is not used on the Spherical
Harmonic basis
– Spherical Harmonics are orthogonal
– It means that the coefficients are

independent of each other
– You can use some of (SH)

coefficients for other coefficients on
a different basis

Details of Light Transport

• To obtain Light Transport coefficients, the
precomputation engine calculates all their
incoming coefficients from other surfaces
– It means that Light Transport coefficients have the

same Light Transport energy that the surfaces
collect from other surfaces

– And surfaces which emit light give energy to other
surfaces

• Without modification to existing SH Lighting
Shader, it multiplies Light Transport
coefficients by light color and intensity
– They are just like vertex color multiplied by specific

intensity and color

Details of Light Transport

• They are automatically computed
by existing global illumination
engine
– When you set energy parameters into

some coefficients, a precomputation
engine for diffuse interreflection will
transmit them to other surfaces

Result of Light Transport

Light Transport
•11.29Hsync 6,600vertices

•9,207,000vertices/sec

Spherical Harmonics
(4 coefficients for each channel)

•15.32Hsync 7,488vertices

•7,698,000vertices/sec

Image Based Lighting

• Our SH Lighting engine supports
Image Based Lighting
– It is too expensive to compute light

coefficients in every frame for PlayStation 2
– Therefore light coefficients are

precomputed off line
– IBL lights can be animated with color,

intensity, rotation, and linear interpolation
between different IBL lights

Image Based Lighting

• IBL light
coefficients are
precomputed in
world coordinates
– It means they have to be

transformed to local
coordinates for each
object

– Therefore, IBL on our
engine requires
Spherical Harmonic
rotation matrices

SH rotation

• To obtain Spherical Harmonic
rotation matrices is one of the
problems of handling Spherical
Harmonics
– We used "Evaluation of the rotation

matrices in the basis of real spherical
harmonics"

– It was easy to implement

SH animation

• Our SH Lighting engine supports
limited animation
– Skinning
– Morphing

SH skinning

• Skinning is only for the
1st and 2nd order
coefficients
– They are just linear
– Therefore, you can use

regular rotation matrices
for skinning

– If you want to rotate above
the 2nd order coefficients
(they are non-linear), you
have to use SH rotation
matrices

– But it is just rotation
– Shadow, interreflection

and sub-surface scattering
are incorrect

SH morphing

• Morphing is linear
interpolation
between different
Spherical Harmonic
coefficients
– It is just linear

interpolation, so
transitional values are
incorrect

– But it supports all types
of SH coefficients
(including Light
Transport)

Future work

• Using high precision buffer and pixel
shader!!

• More precise Glare Effects in optics
• Natural Blur function not Gaussian
• Diaphragm-shaped Blur
• Seamless and Hopping-free DOF along

depth direction
• OLS using HDR values
• Higher quality slight blur effect

Future Work

• Distributed precomputation engine
• SH Lighting for next-gen hardware

– Try: Thomas Annen et al. EGSR 2004
“Spherical Harmonic Gradients for
Mid-Range Illumination”

– More generality for using SH lighting
– IBL map

• Try other methods for real-time
global illumination

References
• Masaki Kawase. "Frame Buffer Postprocessing Effects in

DOUBLE-S.T.E.A.L (Wreckless)“ GDC 2003.

• Masaki Kawase. "Practical Implementation of High Dynamic
Range Rendering“ GDC 2004.

• Naty Hoffman et al. "Rendering Outdoor Light Scattering in
Real Time“ GDC 2002.

• Akio Ooba. “GS Programming Men-keisan: Cho SIMD Keisanho”
CEDEC 2002.

• Arcot J. Preetham. "Modeling Skylight and Aerial Perspective"
in "Light and Color in the Outdoors" SIGGRAPH 2003 Course.

References
• Peter-Pike Sloan et al. “Precomputed Radiance Transfer for

Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments.” SIGGRAPH 2002.

• Robin Green. “Spherical Harmonic Lighting: The Gritty Details.
“ GDC 2003.

• Miguel A. Blanco et al. “Evaluation of the rotation matrices in
the basis of real spherical harmonics.” ECCC-3 1997.

• Henrik Wann Jensen “Realistic Image Synthesis Using Photon
Mapping.” A K PETERS LTD, 2001.

• Paul Debevec “Light Probe Image Gallery”
http://www.debevec.org/

Acknowledgements

• We would like to thank
– Satoshi Ishii, Daisuke Sugiura for

suggestion to this session
– All other staff in our company for screen

shots in this presentation
– Mike Hood for checking this presentation
– Shinya Nishina for helping translation
– The Stanford 3D Scanning Repository

http://graphics.stanford.edu/data/3Dscanrep/

Thank you for your attention.

• This slide presentation is available
on http://research.tri-ace.com/

