
ADS:lab session #2
24, August 2015

Kamil Salakhiev

Time estimating in machine

Machine measures time in 2 ways:

• For itself, by counting ticks

• For humans, by converting ticks to date/time
with taking into account leap years, leap
seconds, coordination shifts (Kazan +3hrs) and
network protocol for auto correlation

What about Java

•

Another method

Another way to calculate elapsed time is System.currentTimeMillis()
method:

long startTime = System.currentTimeMillis();

// ... do something ...

long estimatedTime = System.currentTimeMillis() – startTime;

Why long?

Storage estimating

• Storage refers to the data storage consumed in performing a given
task, whether primary (e.g., in RAM) or secondary (e.g., on a hard disk
drive)

• In Java to estimate consumed memory there is a
Runtime.getRuntime().totalMemory() method, that returns
the total amount of memory currently occupied for current objects
measured in bytes:

long start = Runtime.getRuntime().totalMemory();
System.out.println("start = " + start); // prints 64487424
int arr[] = new int[100000000];
long finish = Runtime.getRuntime().totalMemory();
System.out.println("finish = " + finish); // prints 464519168

The RAM model of computation

The RAM model of computation estimate algorithm according the following
rules:

• Each simple operation (+, *, –, =, if, call) takes exactly one time step.

• Loops and procedures are not considered as simple operations.

• Each memory access takes exactly one time step

Example:
for (int i = 0; i < n; i++) {
 x++;
}

Takes n steps

Big O notation

• In Big O notation we are interested in the determining the order of
magnitude of time complexity of an algorithm

Calculate n-th Fibonacci number (n = 0)

Number of steps: 5

Calculate n-th Fibonacci number (n = 1)

Number of steps: 6

Calculate n-th Fibonacci number (n > 1)

Number of steps: 9 + n + 3(n-1) = 4n + 6

Fibonacci number

•

Time complexities

More examples

•

Counting sort

Sample output:

n = 20

k = 25

A = 12 2 22 24 22 14 6 18 10 6 3 13 17 5 8 13 24 12 22 19

C = 0 0 1 1 0 1 2 0 1 0 1 0 2 2 1 0 0 1 1 1 0 0 3 0 2

A = 2 3 5 6 6 8 10 12 12 13 13 14 17 18 19 22 22 22 24 24

For array A with size n, where
upper possible element equals
K algorithm is the following:

Task #1

• Implement “counting sort” that sorts an array of integers

•Use Math.Random() or r.nextInt(k) to fill array where K is
data value upper limit. Let K = 10000

• Implement time measurement for the algorithm. Measure time using
System.nanoTime() for array size of 100, 1000, 10000, 100000,
1000000 elements in array.

•Vary K from 10000 to 100000 find the dependency of how it affects
time consumption

•*Extra task. Implement counting part of counting sort in parallel.
Compare results

Optional homework

Make a report of done work in LaTex:

• Function graph of time/size(K) (memory)

•Your code (use package: listings)

•Your computer configuration: Processor, number of cores, frequency

•Comparison with parallel sorting - vary number of threads.

•Discuss the performance, your ideas

