Усиление металлических конструкций

Отличительные особенности металлических конструкций зданий и сооружений

- высокая однородность материала, обуславливающая высокую степень соответствия работы элементов и узлов расчетным предпосылкам и, соответственно малые запасы прочности, заложенные при проектировании; в результате, незначительные отклонения от расчетных положений, нарушения требуемой точности в изготовлении, монтаже, небольшие перегрузки могут привести к существенным перенапряжениям элементов металлических конструкций;
- высокая удельная прочность (отношение прочности к массе материала), которая обуславливает тонкостенность и гибкость несущих элементов, следовательно, подверженность под влиянием различных случайных воздействий при изготовлении, перевозке, монтаже, эксплуатации различного рода деформациям это особенно опасно для сжатых элементов;
- склонность к хрупкому и усталостному разрушению при наличии различных концентраторов напряжений, особенно, трещин в сочетании с низкими температурами и динамическими нагрузками;
- наличие сварных соединений, имеющих отличные от основного металла физикомеханические свойства и характеризуемых значительным разбросом эксплуатационных свойств в зависимости от качества наложения сварных швов;
- подверженность коррозии.

- Достоинства металлических конструкций:
 - четкость конструктивной схемы;
 - доступность для обследования и ремонта;
 - высокая технологичность для усиления.
- Наиболее характерными дефектами и повреждениями металлических конструкций, вызывающими необходимость усиления являются:
 - общие и местные деформации;
 - дефекты сварных и болтовых соединений;
 - зазоры и неточности в пространственном положении и взаимном расположении конструкций;
 - коррозионный износ;
 - вырезания в элементах для прокладки технологических коммуникаций.

Особенности оценки несущей способности металлических конструкций

- Если замеренная величина дефекта не превышает нормативные требования на изготовление, монтаж или эксплуатацию и меньше значений, учтенных при проектировании, то расчет конструкций производится по действующим нормам проектирования.
- В тех случаях, когда в конструкциях обнаружены дефекты и повреждения, не учтенные нормами на проектирование, или замеренная их величина превышает требования нормативных документов, проверочный расчет металлических конструкций производят с учетом влияния этих дефектов и повреждений на несущую способность в соответствии с разработанными рекомендациями по оценке состояний эксплуатируемых металлических конструкций.

В "Пособии по проектированию усиления стальных конструкций» даны рекомендации по расчету с учетом:.

- местных ослаблений сечений;
- коррозионного износа;
- общих и местных искривлений стержней

Расчет прочности элементов, имеющих ослабления в виде вырезов, вырывов, подрезов и т.д.

- Проверку прочности проводят по площади нетто с учетом эксцентриситетов действующих усилий от смещения центра тяжести ослабленного сечения относительно центра тяжести первоначального сечения. Считается, что изгибающие моменты от внешних нагрузок приложены в плоскостях, проходящих через центр тяжести исходного сечения, а равнодействующая продольных усилий приложена в центре тяжести этого сечения.
- Расчет прочности стальных элементов, имеющих ослабление сечения, выполненных из стали с пределом текучести до 530 МПа и не подвергающихся непосредственному воздействию динамических нагрузок (3 и 4 класс конструкций), производится по формуле (49) СНиП /1/ с использованием добавочных усилий, высвобожденных от ослабления сечения $N_{\text{осп}}$, $M_{\text{осп}}^{\text{y}}$, $M_{\text{осп}}^{\text{y}}$, $M_{\text{осп}}^{\text{y}}$.

• Условие прочности

$$\left(\frac{N+N^{ocn}}{AR_{yo}\gamma_c}\right)^n + \frac{M_x + M_x^{ocn}}{C_x I_x R_{yo}\gamma_c} \cdot y_c + \frac{M_y + M_y^{ocn}}{C_y I_y R_{yo}\gamma_c} \cdot x_c \le 1;$$

• Дополнительные усилия

$$N^{\text{осл}} = \delta^{\text{осл}} \cdot A^{\text{осл}}; M_{x}^{\text{осл}} = N_{\text{осл}} \cdot y_{\text{осл}}; M_{y}^{\text{осл}} = N_{\text{осл}} \cdot x_{\text{осл}};$$

• Условное напряжение в ц.т. выреза в сечении нетто

$$\mathcal{G}^{ocn} = \mathcal{G}_{F} \cdot \left(1 - \frac{A^{ocn}}{A} - \frac{I_{x}^{ocn}}{I_{x}} - \frac{I_{y}^{ocn}}{I_{y}} \right)^{-1};$$

• Напряжение в ц.т. выреза участке до ослабления сечения

$$\mathcal{G}_{F} = \frac{N}{A} + \frac{M_{x}}{I_{x}} \cdot y^{ocn} + \frac{M_{y}}{I_{y}} \cdot x^{ocn}.$$

- В формулах обозначено:
- x_c , y_c координаты наиболее напряженной точки ослабленного сечения относительно главных осей x_0 - x_0 и y_0 - y_0 исходного сечения;
- x^{ocn} , y^{ocn} координаты центра тяжести площади выреза относительно осей x_0 - x_0 и y_0 - y_0 (рис.);
- A, I_x , I_y геометрические характеристики исходного сечения без учета ослабления;
- A^{ocn} , I_x^{ocn} , I_y^{ocn} геометрические характеристики выреза (моменты инерции берутся относительно собственных осей выреза);
- n, c_x , c_y коэффициенты, принимаемые по табл.66 СНиП /1/ для неослабленного сечения при учете пластической работы материала.

Расчет элементов, подверженных коррозионному износу

- Учитывают:
 - а) ослабление рабочего сечения;
 - б) снижение прочности;
 - в) снижения сопротивляемости хрупкому разрушению.

• а) Площадь поперечного сечения при коррозии:

$$A_{ef} = A_o \cdot (1 - K_{SA} \cdot \Delta).$$

где $A_{\it ef}$ $A_{\it o}$ - площадь сечения элемента, соответственно, с учетом и без учета коррозионного износа.

⊿ - величина одностороннего проникновения коррозии;

 K_{SA} - коэффициент слитности сечения, равный отношению периметра, контактирующего со средой к площади поперечного сечения, принимается:

 $K_{SA} = 2/t -$ для уголков;

 $K_{SA} = 1/t$ - для замкнутых профилей;

 $K_{SA} = 4/(t_w + t_p)$ - для швеллеров и двутавров,

здесь t - толщина элемента, t_w и t_f -толщины полки и стенки соответственно.

• б) Момент сопротивления при коррозии:

$$W_{ef} = W_o \cdot (1 - K_{SW} \cdot \Delta).$$

- где W_{ef} , W_o момент сопротивления элемента, соответственно, учетом и без учета коррозионного износа;
- K_{SW} коэффициент снижения момента сопротивления, учитывающий снижение момента сопротивления сечения элемента при утонении элемента на $\Delta = 1$ мм со стороны поверхностей, соприкасающихся с внешней средой

Значения коэффициентов k_{swx} , k_{swx} для различных профилей

Швеллера			Двутавры обычные			Двутавры широкополочные		
N	k _{swx}	k _{swx}	N	kswx	k_{swx}	N	k _{swx}	k _{swx}
12	0.29	0.27	20	0.26	0.24	20Ш	0.33	0.27
14	0.28	0.26	22	0.25	0.23	23Ш	0.29	0.27
16	0.27	0.25	24	0.24	0.21	26Ш	0.25	0.25
18	0.26	0.24	27	0.23	0.20	30Ш	0.22	0.21
20	0.25	0.23	30	0.22	0.20	35Ш	0.20	0.18
22	0.24	0.23	36	0.18	0.16	40Ш	0.17	0.16
24	0.23	0.22	40	0.17	0.15	50Ш	0.17	0.16
27	0.22	0.20	50	0.15	0.13	60Ш	0.16	0.15
30	0.21	0.19	60	0.13	0.11	70Ш	0.15	0.14
36	0.18	0.17	S. S	455,760,534	100-000-000	30) Sene (3-8).5	NOV-EXCEDED.

- б) Снижение прочности материала учитывают **снижением расчетного сопротивления стали** путем умножения на коэффициент γ_d •
- γ_d вводится в расчет для элементов конструкций: имеющих коррозионный износ с потерей более 25% площади поперечного сечения или остаточную после коррозии толщину 5 мм и менее.
- Величина γ_d принимается для:
 - слабоагрессивных сред $\gamma_d = 0.95$;
 - среднеагрессивных сред $\gamma_d = 0.9$;
 - сильноагрессивных сред $\gamma_d = 0.85$.
- Степень агрессивности сред в зависимости от влажности, температуры среды и концентрации агрессивных по отношению к стали газов определяется по СНиП 2.03.11-85 "Защита строительных конструкций от коррозии».

• Снижение сопротивляемости хрупкому разрушению конструкций, эксплуатируемых в условиях низких температур, при коррозии учитывают повышением критической температуры хрупкости $T_{cr.}$

Расчет искривленных сжатых стержней

- Сжатые элемента, имеющие общие искривления, рассчитываются как внецентренно сжатые.
- Отличие работы искривленных стержней от внецентренно сжатых учитывается умножением стрелки искривления в ненагруженном состоянии f_o на коэффициент k перехода от максимальной стрелки искривления к эквивалентному эксцентриситету.
- Приведенное значение относительного эксцентриситета определяется

$$m_{ef} = k \cdot \eta \cdot m_f$$

• Величина относительного эксцентриситета вычисляется по величине *стрелки искривления стержня в ненагруженном состоянии* определяемом:

$$f_o = \psi_o \cdot f_{H},$$

- где f_{H} измеренная (натурная) величина стрелки искривления;
- ψ_o коэффициент, показывающий долю начальной стрелки искривления элемента (до приложения нагрузки) в замеренной величине искривления. вычисляется по формуле

$$\psi_o = 1 - 0.1 \frac{\bar{\lambda}^2 \cdot \delta}{R_{wo}}$$

• где $\delta = N_o/A_o \sim \pi$ для - напряжение в стержне в момент искривления; N_o - нагрузка, при которой измерена $f_{_H}$.

Крепление усиливающих элементов к существующим

- Как правило, металлические конструкции усиливаются путем приварки дополнительных стальных элементов.
- При необходимости, например, для повышения жесткости стальных элементов (особенно сжатых стоек) без существенного повышения прочности или для защиты стали от коррозии могут применяться **бетон, железобетон, фибробетон**, а для временного усиления гибких стержней может применяться дерево.
- При усилении бетоном сцепление бетона с металлом обеспечивается приваркой к поверхности стали стержней диаметром 5...8 мм, которые могут иметь крюки на концах. Деревянные элементы крепятся с помощью стальных скруток.
- Крепление усиливающих стальных элементов к усиливаемым конструкциям помимо сварки, может быть осуществлено с применением высокопрочных болтов и реже на болтах повышенной точности (класса точности А).

Крепление с помощью сварки

Достоинства

- Простота;
- Технологичность;
- Незначительный объема дополнительного металла;
- Эффективное включение усиливающего элемента в работу конструкции.

Недостатки:

- в процессе сварки снижается несущая способность элемента;
- при остывании получаются сварочные деформации или остаточные напряжения.

- Степень снижения несущей способности и величина остаточных деформаций зависят от
- режима сварки (вида и силы тока, диаметра электрода, скорости сварки и т.п.);
- толщины и ширины элемента;
- последовательности наложения швов.

Для продольных швов при нагреве снижение прочности находится в пределах до 15 %, для поперечных швов может достигать 40 %. Поэтому наложение швов поперек элемента при усилении его под нагрузкой запрещается. В растянутых элементах не допускаются поперечные швы в любом случае.

- Усиление под нагрузкой при усилении с применением сварки производят:
- в статически определимых конструкциях при $\sigma \leq 0.8 \ R_1$

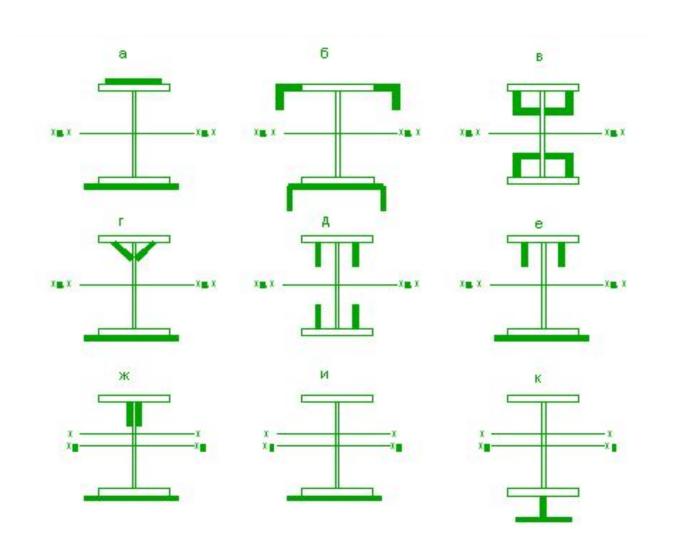
Порядок выполнения сварки при усилении

- 1. присоединение (прижатие) элементов усиления по всей длине к усиливаемой конструкции с помощью струбцин, стяжек или иных устройств. Возникающие при этом силы трения обеспечивают совместную работу элементов при наложении сварочных прихваток:
- 2. приварка элементов усиления на сварочных прихватках, это обеспечивает включение элементов усиления в совместную работу на изгиб при малом разогреве основного стержня, повышает несущую способность стержня в процессе усиления и способствует значительному уменьшению сварочных деформаций. Сварочные прихватки воспринимают незначительные сдвигающие усилия, возникающие вследствие приращения прогибов стержня при наложении в последующем связующих швов. Их размещают в местах расположения швов (для шпоночных швов) с шагом 300...500 мм и длиной 20...30 мм;
- 3. *сварка концевых участков*, включающая в работу элементы усиления усиливаемого по всей длине, в определенной степени снижающая сварочные деформации;
- 4. *наложение связующих швов*, обеспечивающих совместную работу усиливаемого стержня и элементов усиления.

- - $C_{9} = C + Mn/6 + Cr/5 + V/5 + Mo/4 + Ni/15 + Cu/13 + P/2.$
- где C углерод, Mn марганец, Cr хром, V водород, Ni никель, Mo молибден, Cu медь, P фосфор содержание химических элементов в %.
- При $C_{_{9}} \le 0.42$ сталь имеет удовлетворительную свариваемость;
- При $C_9 > 0.42$ требуется назначать специальные режимы сварки, гарантирующие качество сварного соединения.

Крепление с помощью болтов

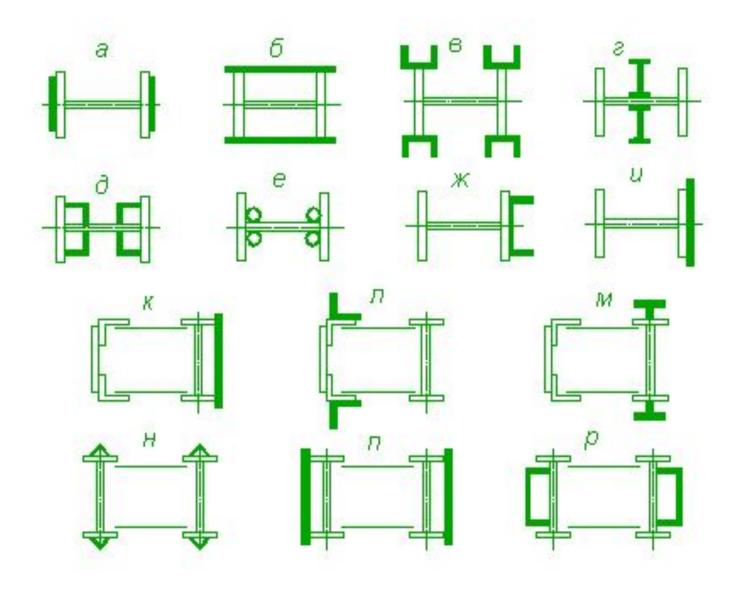
Применение болтов для присоединения элементов усиления рекомендуется в случаях, когда:


- Условия эксплуатации не допускают применения сварки;
- Металл усиливаемого и усиливающего элементов относится к трудносвариваемому;
- Желательно избежать дополнительных сварочных напряжений и деформаций.
- Болтовые соединения технологически более удобны;

Порядок выполнения усилений с применением болтов

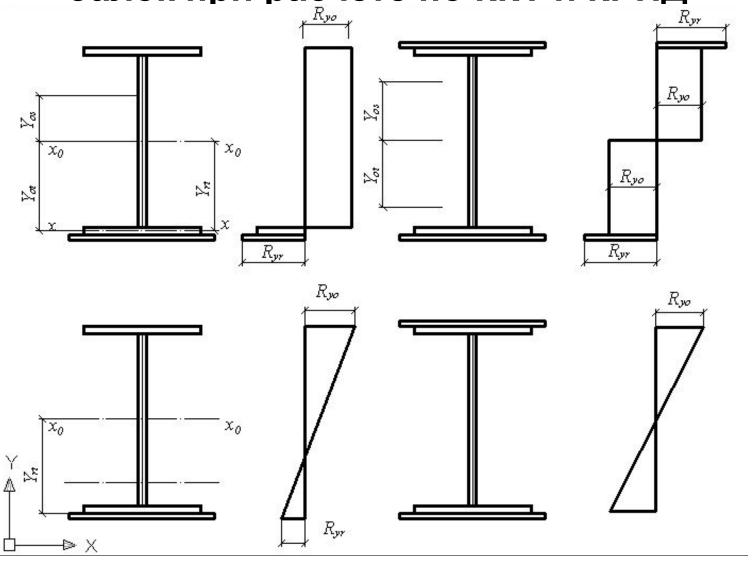
- Производится сборка соединения на струбцинах;
- Устанавливаются болтов в концевых участках;
- От концов к середине осуществляются промежуточные соединения;
- Просверливание следующих отверстий производится после установки болта в предыдущее;
- Окончательно закручиваются болты в концевых участках.

Шаг болтов $s \le 40i$ — в сжатых элементах; $s \le 40i$ — в растянутых элементах, i - радиус инерции усиливающего элемента.


Схемы усиления стальных балок путем увеличения сечения

Общие замечания к выбору схемы усиления

- Эффективны двусторонние схемы усиления, т.к. при этом достигается существенное увеличение момента инерции и момента сопротивления.
- Однако ввиду размещения покрытия (перекрытия) на верхнюю полку балки, двусторонняя схема осуществима не всегда;
- Одностороннее усиление эффективно только при учете упругопластической стадии работы материала или усилении регулированием напряжений. В противном случае необходимо существенное увеличение высоты элемента;
- Сварные швы преимущественно следует проектировать нижними;
- Применение фасонного проката, более технологично по сравнению с листовой сталью (меньший объем


Схемы усиления колонн увеличением сечения

Классы стальных конструкций

- Принято следующее разделение конструкций на классы в зависимости от вида нагружения и норм допустимых пластических деформаций:
- 1 класс сварные конструкции, работающие в особо тяжелых условиях эксплуатации (подкрановые балки для кранов режима ра боты 7К и 8К, элементы конструкций бункерных и разгрузочных эс такад, непосредственно воспринимающие нагрузки от подвижных составов). Расчеты прочности элементов условно выполняются в предположении упругой работы стали.
- **2 класс** элементы конструкций, непосредственно воспринимающих подвижные, динамические или вибрационные нагрузки и не входящих в класс 1. Норма предельных пластических деформаций $\varepsilon_{pl.u}$ 0.001.
- **3 класс** элементы конструкций, работающих при статических нагрузках, кроме элементов, относящихся к классу 4, $\varepsilon_{nl,u}$ =0.002
- **4 класс** элементы конструкций, работающих при статических нагрузках и положительных температурах, $\varepsilon_{pl,u}^{}=0.004$.
- Расчет элементов конструкций 1...3 классов производится по *критерию краевой текучести (ККТ)*, который при усилении под нагрузкой является чисто условным и обеспечивает ограничение уровня пластических деформаций нормой $\varepsilon_{pl,u}$ =0.002. Расчет

Распределение напряжений при одностороннем и двустороннем усилении балок при расчете по ККТ и КРПД

Проверка прочности элементов по критерию развитых пластических деформаций (КРПД) производится по формулам метода предельного равновесия:

- центрально-растянутые и сжатые, симметрично усиленные элементы

$$N \leq N_u \gamma_c$$

- изгибаемые элементы

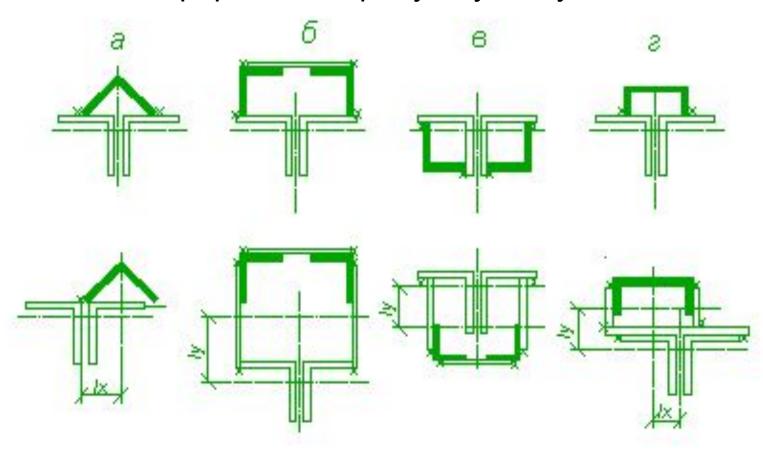
$$M \leq M_u c_T \gamma_c$$

- сжато- и растянуто изогнутые элементы

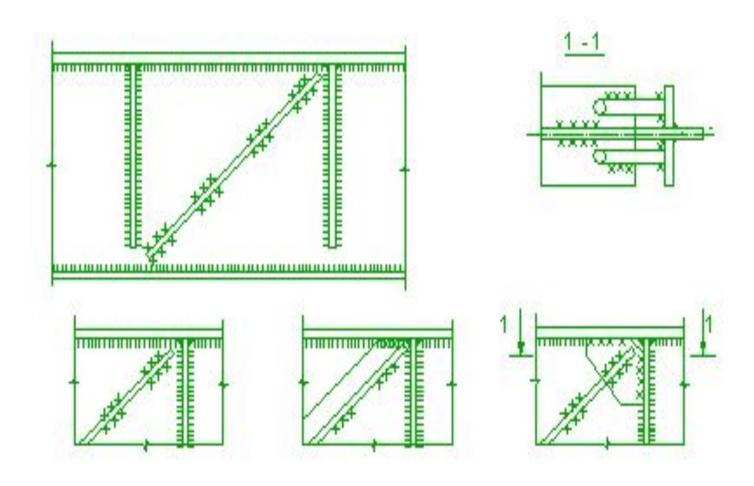
Где:

 N_u — предельное продольное усилие, воспринимаемое усиленным сечением, принимается

$$N_u = (A_0 + \alpha A_r) R_{yo} \gamma_N$$


 $M_{u}(M_{ux}, M_{uy})$ — предельный изгибаемый момент, воспринимаемый усиленным сечением

$$M_{ux} = [A_{oc} y_{oc} + A_{ot} y_{ot} + \alpha (A_{rc} y_{rc} + A_{rt} y_{rt})] R_{yo} \gamma_{M}$$

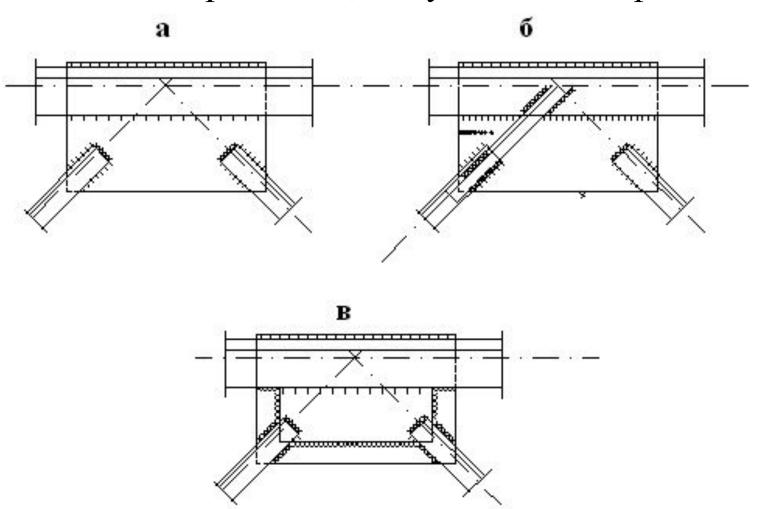

 c_m поправочный коэффициент, учитывающий влияние поперечных сил, для двутавровых сечений:

- Ввиду сложности разгрузки усиление колонн является наиболее трудоемкой;
- Усиление колонн изменением конструктивной схемы применяется в двух случаях:
 - временная нагрузка составляет более 40% полной и в период усиления может быть устранена;
 - установка предварительно напряженных элементов практически не осуществима;
- Несимметричные схемы усилений рационально использовать при преобладании моментов одного знака;
- При усилении колонн крайних рядов следует учитывать отсутствие доступа или необходимость разборки стены.

Схемы усиления деформированных стержней стропильных ферм при искривлении из плоскости фермы – *a, г*; в плоскости фермы в сторону пера уголков – *б*; в плоскости фермы в сторону обушка уголков - *в*

Установка наклонных ребер жесткости без пригонки к поясам (а,б) и с пригонкой к поясам (в, г)

Усиление сварных соединений


- Требуется при:
 - Обнаружении трещин или дефектов в швах или околошовной зоне;
 - Недостаточной длине или толщине шва (по результатам расчетов)
- Усиление выполняется:
 - Путем увеличение длины шва;
 - Увеличения толщины шва;
 - Устройством дополнительных промежуточных деталей.

Требования при усилении сварных швов

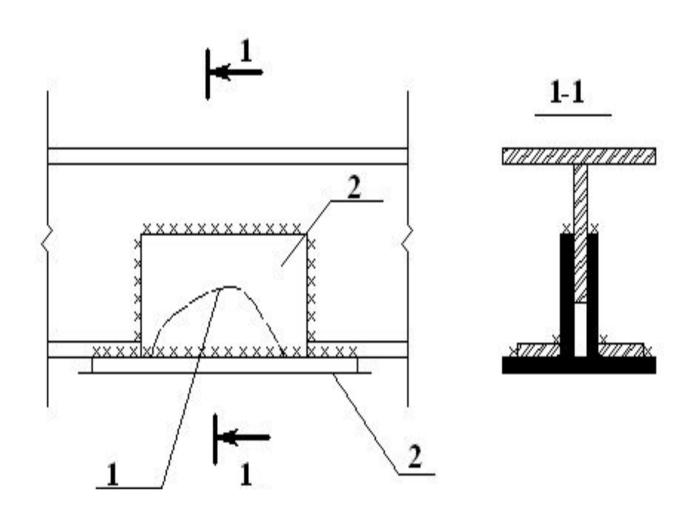
- Диаметр электродов не более 4 мм;
- Сила тока не более 220 А;
- Толщина шва за один проход не более 4 мм;
- При послойном наложении толщина слоев не более 2 мм;
- Сварка последующего слоя производится после охлаждения предыдущего шва до температуры t ≤ 100 °C;
- Сварка производится при t ≥ -15 ⁰ С для толщин до 30 мм и t ≥ 0 ⁰ С для толщин свыше 30 мм;
- Предпочтение отдается длинным и тонким швам.

Усиление сварных швов узлов стропильных

ферм: а -увеличением длины швов; $\mathbf{6} - \mathbf{c}$ введением коротышей; $\mathbf{B} - \mathbf{y}$ длинением фасонок

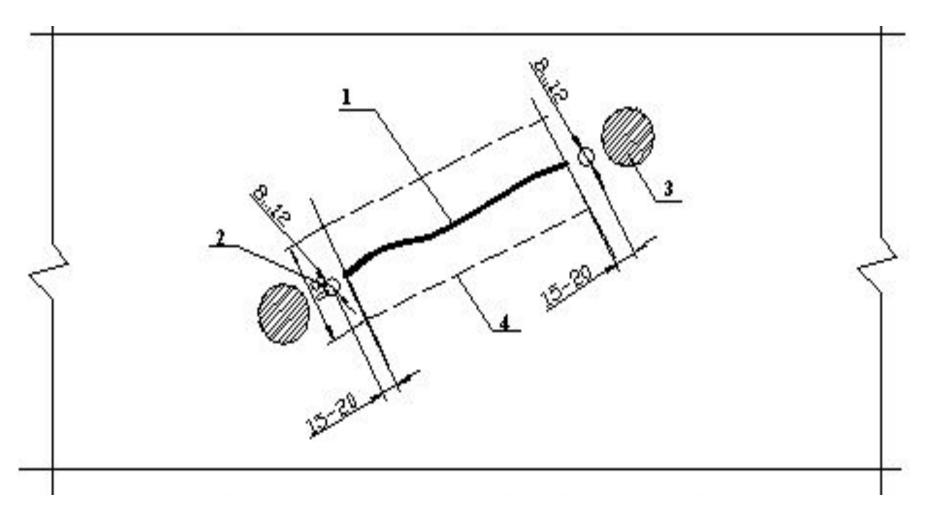


Усиление болтовых соединений


- При недостаточной несущей способности устанавливаются дополнительные болты;
- Наиболее нагруженные крайние болты могут заменяться высокопрочными болтами;
- Усиление обычных болтовых соединений сваркой допускается только при восприятии всех усилий сварными швами;
- Усиление соединений на высокопрочных болтах с применением сварки допускается при соответствующем обосновании деформативности соединения.

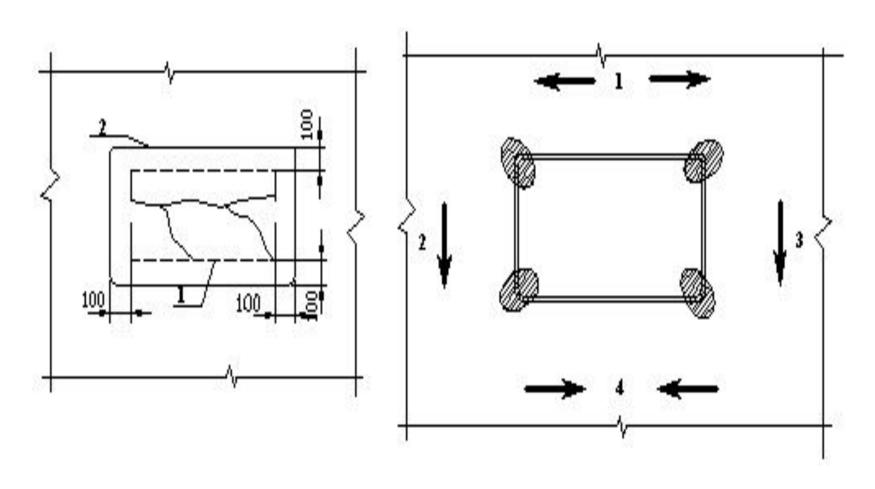
Устранение повреждений

• Устранение местных погнутостей стальных уголков (а,б) и выпучивания стенок двутавра (в)



Восстановление выреза нижней полки и стенки двутавра: 1 – линия выреза; 2 – стальные накладки

Устранение трещины заваркой:


1 – трещина; 2 – отверстия-ловители; 3 – места подогрева; 4 – зона зачистки

Последовательность устранения трещины

- Зачистка зоны трещины до чистого металла на ширине не менее 80 мм и выявление концов трещины с помощью пенетрантов;
- Рассверливание по ходу распространения трещины на расстоянии 15...20 мм от концов отвертий-ловителей диаметром 8...12 мм;
- Разделка кромок трещины под сварку (при толщине 12 мм и более);
- Подогрев концевых участков трещины пламенем газовой горелки до t = 100…150 ⁰ C и поддержка до конца заварки;
- Заварка трещины обратноступенчатым методом с проковкой пнвмозубилом с радиусом закругления 2...4 мм;
- Обработка заваренной поверхности шлифмашинкой до высоты 2 мм и ассверливание отверстий-ловителей до 20...25 мм;
- Контроль качества сварки физическими методами.

Замена участка с трещиной устройством накладки: 1 – граница дефектного участка; 2 – линия реза; 3 – места подогрева (стрелками и цифрами показаны направления и порядок сварки

Особенности расчета усилений металлических конструкций

Учитываются:

- Различная прочность сталей усиливаемого и усиливающего элементов;
- Деформации элементов ввиду высокотемпературного нагрева и остывания при сварке, а также влияния жесткости усиливающего элемента на деформирование усиленного элемента;
- Упругопластическая работа элементов, усиленных с применением сварки, даже если они рассчитаны по критерию краевой текучести;
- Изменение усилий в несущей системе в целом, вследствие изменения жесткости усиленного элемента и дополнительных сварочных деформаций.

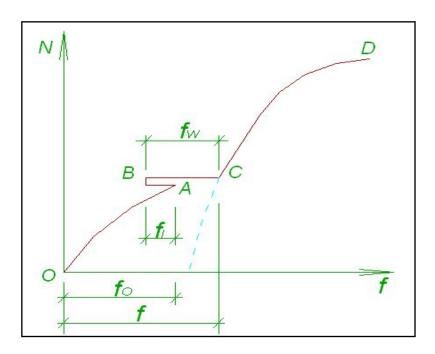
Учет различной прочности сталей усиливаемого и усиливающего элементов

• При расчете устойчивости стержня, усиленного из стали более высокой прочности, приведенное расчетное сопротивление бистального элемента определяется

$$R_{y.red} = R_{y0} \sqrt{k_A k I}$$

$$k_A = \alpha - (A_0 / A)(\alpha - 1)$$

$$k_I = \alpha - (I_0 / I)(\alpha - 1)$$


$$\alpha = R_{yr} / R_{y0}$$

где I_{0} , I, A_{0} , A — моменты инерции и площади сечения, соответственно, усиливаемого и полного усиленного сечения; R_{yr} , R_{y0} — расчетное сопротивление, соответственно, усиливающего и усиливаемого элементов.

• При расчете по прочности элементы вводятся со своим расчетным сопротивлением.

Прогиб элемента при усилении с применением сварки

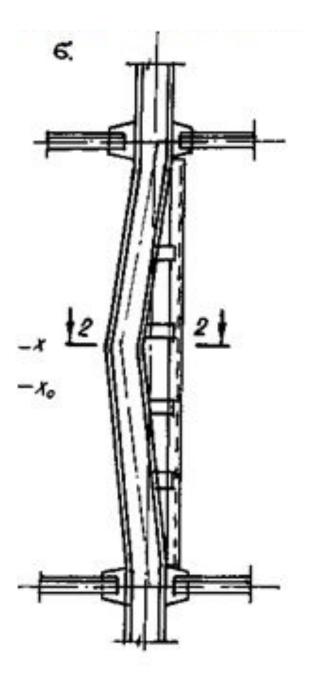
• Диаграмма прогибов стержня, усиленного увеличением сечения с применением сварки

• AO — прогибы стержня до усиления (f_0) , AB — обратный выгиб от присоединения усиливающего элемента (f_I) ; BC — прогиб при сварке (f_W) ; $C\mathcal{I}$ — рост прогиба после усиления при возрастании нагрузки.

Прогиб элемента после усиления

$$f = f_0 + f_I + f_w$$

Выгиб усиленного элемента после присоединения усиливающего элемента:


$$f = f_0 \cdot \alpha_N \cdot \frac{\sum I_r}{I_0 + \sum I_r}$$

где f_{θ} — прогиб элемента до усиления, принимается равным большему из двух величин прогиба - расчетного $f_{\theta}^{\ \ pacu}$ или натурно измеренного $f_{\theta}^{\ \ ham}$.

 $\sum I_r$ — сумма моментов инерции усиливающих элементов относительно их собственных осей;

 I_0 — момент инерции усиливаемого элемента;

 $\alpha_N^{}-$ коэффициент, учитывающий влияние продольной силы, равен $\alpha_N^{}=N/(N_{_{\it 9}}-N_{_{\it 0}})$ – при сжатии и $\alpha_N^{}=1$ при изгибе.

• Остаточный прогиб элемента от сварочных деформаций

$$f_I = \alpha_N \cdot a \cdot \frac{V \cdot l_0^2}{8I} \sum n_i \cdot y_i$$

- где a коэффициент прерывистости сварного шваЮ принимается $a = l_w/l_{aw}$, для сплошных швов a = 1;
- $V = 0.004k_f$ параметр продольного укорочения элемента;
- l_0 расчетная длина элемента;
- y_i расстояние от i -го шва до нейтральной оси усиленного элемента;
- n_i коэффициент, учитывающий начальное напряженнодеформированное состояние элемента и схему его усиления.

• Допускается дополнительные искривления элементов от сварки при расчете на устойчивость приближенно учитывать введением коэффициента условий работы $\gamma_c = 0.8$

Учет упругопластической работы усиленных элементов

- Учитывается введением дополнительного коэффициента условий работы: γ_N при сжатии и растяжении и γ_M -при изгибе.
- Для элементов, рассчитываемых по ККТ:
 - работающих на сжатие и растяжение $\gamma_N = 0.95$ при усилении без применения сварки и $\gamma_N = 0.95 0.25\beta_0$ при усилении с применением сварки;
 - работающих на изгиб $\gamma_N = 1$.
- Для элементов, рассчитываемых по КРПД:
 - При симметричном двустороннем усилении элементов симметричного сечения $\gamma_M = 0.95$;
 - При несимметричном двустороннем или одностороннем усилении со стороны растянутых волокон $\gamma_M = 0.95 0.2\beta_0$ (α -1);
 - При одностороннем усилении со стороны сжатых волокон $\gamma_M = 0.95 0.1(\beta_0 + \alpha 1)$.

$$\beta_{\theta} = \sigma_{\theta,max}/R_{v}$$
 $\sigma_{\theta} = N_{\theta}/A_{\theta} \pm M_{\theta x}y/I_{\theta x} \pm M_{\theta v}x/I_{\theta v}$

При $\beta_0 \le 0.3$ статический расчет выполняется без учета

Учет возможного неблагоприятного перераспределения усилий в системе при усилении

• Приращение продольной деформации при сварке

$$\Delta_{w} = \frac{0.04 \cdot k_{f}^{2}}{A \cdot \sum n_{i}}$$

• Приращение кривизны при сварке

$$\chi_{w} = \frac{0.04 \cdot k_{f}^{2}}{I \cdot \sum n_{i} y_{i}}$$