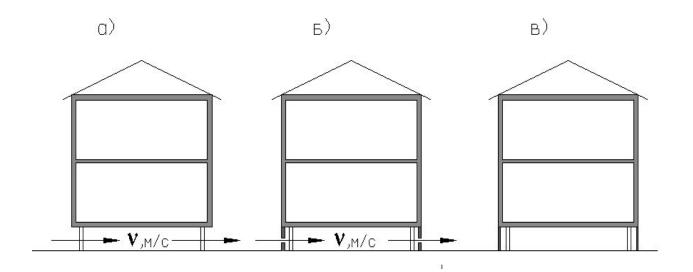
К Жатайскому дому

Известно, что традиционный способ строительства малоэтажных жилых зданий из древесины предусматривает наличие подполья с утеплением не только цокольного перекрытия, но и стенок подполья. Возникает вопрос, можно ли возводить здания с подпольями с утепленными стенками при наличии вечномерзлых грунтов?


Специалистами Института мерзлотоведения Академии наук выполнен ряд работ, подтверждающих такую возможность. Например, Г.О. Лукин (1946), Н.И. Салтыков (1946), В.Ф. Тумель (1964) и другие, проводившие наблюдения за основаниями отапливаемых зданий на Севере, дают однозначно положительный ответ. Согласно собранным ими данным, в условиях сурового климата и низкой температуры грунтов в гг. Якутске и Дудинке, под деревянными зданиями шириной до 10-12 м с двойными полами и подпольями высотой до 0,3...0,4 м не наблюдаются протаивания. И это несмотря на то, что наружные и внутренние завалинки, окружающие подполья, тщательно

22KNLID2IOTCA U2 2KMV K OTKNLID2IOTCA D ACTUCC DNOMA AAA AACACATNKD2UKA DO

П.И. Мельников, В.Я. Шамшура, тоже делают аналогичное заключение: «...при сооружении же жилых зданий и зданий с тепловым режимом, близким к жилым, можно ограничиться устройством двойного теплого пола и подполья высотой 0,25-0,5 м».

Салтыков Н.И.: «В г. Норильске имеется ряд домов, эксплуатируемых без проветривания подполья, где мерзлота все же сохраняется. Среднегодовая температура в таких подпольях колеблется от -0,5 до +1,0 °C. ... Холодные непроветриваемые подполья могут быть выгодными с точки зрения предохранения квартир первого этажа от охлаждения через пол».

Г.В. Порхаев отмечает, что под многими зданиями дореволюционной постройки в г. Якутске глубина оттаивания за 20-30-летний срок эксплуатации достигала всего 2,5-3,5 м. В его монографии приводится рекомендация: «Во многих районах области распространения вечномерзлых грунтов со средней температурой порядка -3 — -4 °C и ниже, жилые здания можно возводить на фундаментах, заглубленных ниже 30HЫ оттаивания, устраивая под зданиями теплые

Типы подполий зданий, описанные в нормах проектирования "Основания и фундаменты на вечномерзлых грунтах": а) вентилируемые подполья; б) подполья с вентилируемыми продухами в цоколе здания; в) закрытые подполья (как правило, подполье закрывается по периметру тонкими листовыми материалами).

Уравнение баланса энергии на земной поверхности:

$$R = P + LE + B + \Delta W$$

- R радиационный баланс, МДж/м 2 ;
- интенсивность турбулентного теплообмена с атмосферой, МДж/м²;
- LE затраты тепла на испарение, МДж/м 2
 - величина испарения;)
 - E теплота испарения воды;
 - \mathbf{B} тепловой поток в грунт или снег, МДж/м 2 ;
 - ΔW тепло, идущее на таяние снега, МДж/м².

Радиационный баланс определяется зависимостью:

$$R = (S^1 + D)(1 - A) - E_{9\phi}$$

где

- S^1 прямая солнечная радиация на горизонтальную поверхность при действительных условиях облачности, МДж/м 2 ;
 - рассеянная солнечная радиация на горизонтальную поверхность при действительных условиях облачности, МДж/м²;
 - A альбедо деятельной поверхности, %;
 - $E_{
 ightarrow \phi}$ эффективное излучение.

Модель основана на решении трехмерной задачи теплопроводности:

$$\begin{split} \left[c\rho(T) + m\rho_{x}L\frac{d\beta_{x}}{dT}\right] &\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(T)\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y} \left(\lambda(T)\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z} \left(\lambda(T)\frac{\partial T}{\partial z}\right), \\ &(x,y,z) \in \Omega, \quad t > 0; \\ &\lambda(T)\frac{\partial T}{\partial z} = 0, \quad x = \pm \infty; \\ &\lambda(T)\frac{\partial T}{\partial y} = 0, \quad y = \pm \infty; \\ &\lambda(T)\frac{\partial T}{\partial z} = \alpha^{*}(T - T^{*}) + (1 - A)Q_{c}, \quad z = 0; \\ &\lambda(T)\frac{\partial T}{\partial z} = 0, \quad z = \infty; \\ &T(x,y,z,0) = T_{0}(x,y,z); \end{split}$$

Теплообмен в подполье задается параметрами:

$$\alpha_{_{\Pi}}^{*} = \frac{\alpha_{_{1}} + \frac{S_{_{2}}}{S_{_{\Pi}}}\alpha_{_{2}}}{1 + \frac{\alpha_{_{1}}}{\alpha_{_{\Pi}}} + \frac{S_{_{2}}\alpha_{_{2}}}{S_{_{\Pi}}\alpha_{_{\Pi}}}}$$

$$T_{_{\Pi}}^{*} = \frac{\frac{\alpha_{_{1}}}{\alpha_{_{\Pi}}} T_{_{B}} + \frac{S_{_{2}}\alpha_{_{2}}}{S_{_{\Pi}}\alpha_{_{\Pi}}} T_{_{H}}}{\frac{\alpha_{_{1}}}{\alpha_{_{\Pi}}} + \frac{S_{_{2}}\alpha_{_{2}}}{S_{_{\Pi}}\alpha_{_{\Pi}}}}$$

где $\alpha_{_{\rm H}}$, $T_{_{\rm H}}$ – коэффициент теплообмена на дневной поверхности и температура наружного воздуха, соответственно;

 $\alpha_{1}, \, \alpha_{2} \, \alpha_{n}$ — коэффициенты теплообмена на перекрытиях цоколя, стенок

подполья и на полу;

 $T_{_{\rm B}},\ T_{_{\rm H}}$ – температуры внутреннего и наружного воздуха,

$$S_{_{\rm II}} = ab$$
 $S_{_2} = 2(b+a)H_{_{\rm II}}$ — площадь пола и суммарная площадь стенок подполья, при длине a , ширине b здания и высоте $H_{_{I\!\!I}}$ подполья.

Суммарная солнечная радиация на горизонтальную поверхность при действительных условиях облачности, МДж/м²

Населенный		Месяцы													
пункт	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII			
Якутск	34	114	329	509	591	658	627	469	283	141	54	18			

Альбедо деятельной поверхности, %

Населенный		Месяцы													
пункт	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII			
Якутск	78	79	76	54	17	18	18	18	19	51	78	77			

Среднемесячные значения эффективного излучения, Ккал/см²

Населенны	Месяцы													
й пункт	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
Якутск	0.8	1.0	1.8	2.4	4.3	4.8	4.1	3.7	3.1	1.6	1.0	0.7		

Среднемесячные значения температуры наружного воздуха, °С

Населенный	Месяцы													
пункт	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
Якутск	-39,6	-35,0	-20,8	-5,2	7,3	16,1	19,1	15,1	5,9	-8,0	-28,2	-38,1		

Выбрана следующая формула для определения коэффициента конвективного теплообмена:

$$\alpha_k = K \upsilon^{0,8} l^{-0,2}$$

Среднемесячные значения скоростей ветра, м/с

Населенны		Месяцы												
пункт	й пункт I III IIV V VI VII VIII IX X XI									XI	XII			
Якутск	1,4	1,3	2,0	2,8	3,4	3,3	2,9	2,7	2,6	2,5	2,0	1,3		

Зависимость значений коэффициента К от температуры

t, °C	К
-50	6.96
-40	6.76
-30	6.62
-20	6.47
-10	6.35
0	6.22
10	6.08
20	5.97
30	5.87
40	5.79

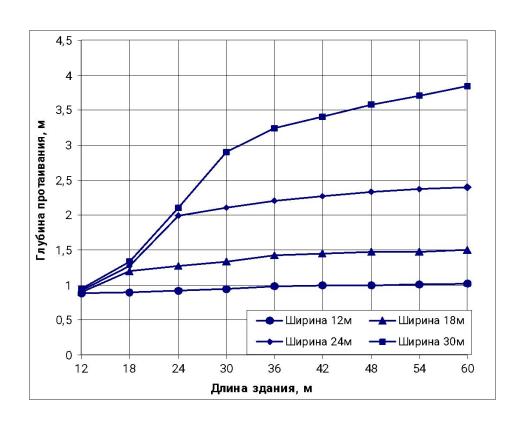
Термическое сопротивление снегового покрова нормы проектирования рекомендуют определять по формуле:

$$R_s = m_l \frac{(1+0.2)d_s}{0.02 + \rho_s}$$

где m_{l} – коэффициент учета размерностей;

 $d_{_S}$ – средняя высота снегового покрова, м; принимаемая по метеоданным;

 ρ_{s} - средняя плотность снегового покрова, m/m^{3} , принимаемая по метеоданным.

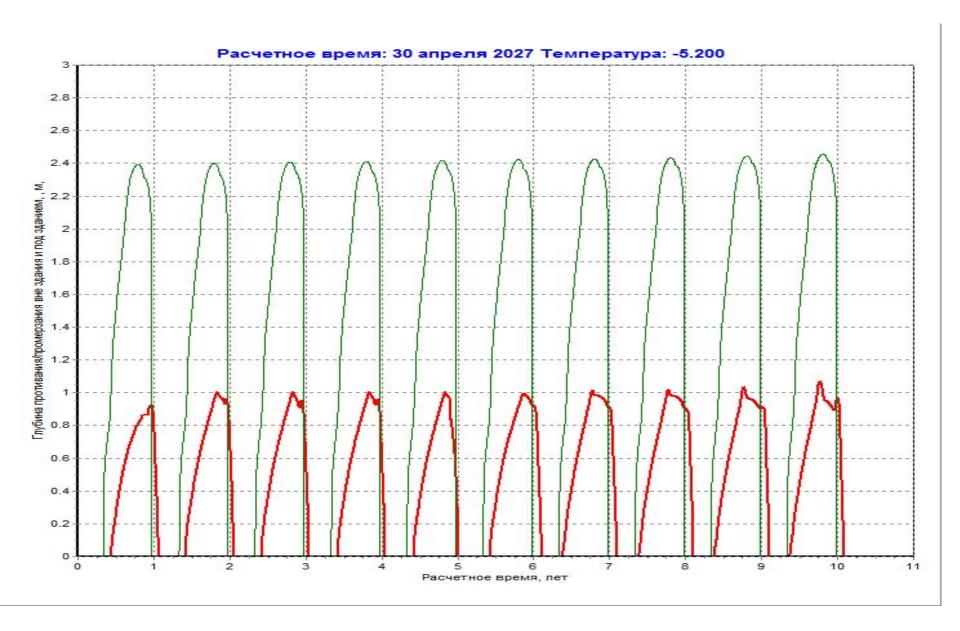

Параметры снегового покрова

H. пу	Месяцы																							
нкт нкт	T X XI XII I II III IV											V												
	Декады																							
	11	22	33	11	22	33	11	22	33	11	22	33	11	22	33	11	22	33	11	22	33	11	22	3
Як утс	Высота снежного покрова по постоянной рейке (см)																							
К	11	23	55	88	111	114	116	117	119	222	223	225	227	227	228	229	228	228	225	119	88	11		-
			Пло	тнос	ть сі	нжы	ого і	токр	ова і	10 СН	егос	ьемк	ам н	а по	след	ний ,	день	дека	ады (м/см	(²)			
	-	0. 1 3	0. 1 3	0. 1 3	0. 1 3	0. 1 4	0. 1 4	0. 1 5	0. 1 4	0. 1 5	0. 1 5	0. 1 7	0. 1 6	0. 1 6	0. 1 6	0. 1 6	0. 1 7	0. 1 7	0. 1 8	0. 2 0	0 . 2 4	-	-	-

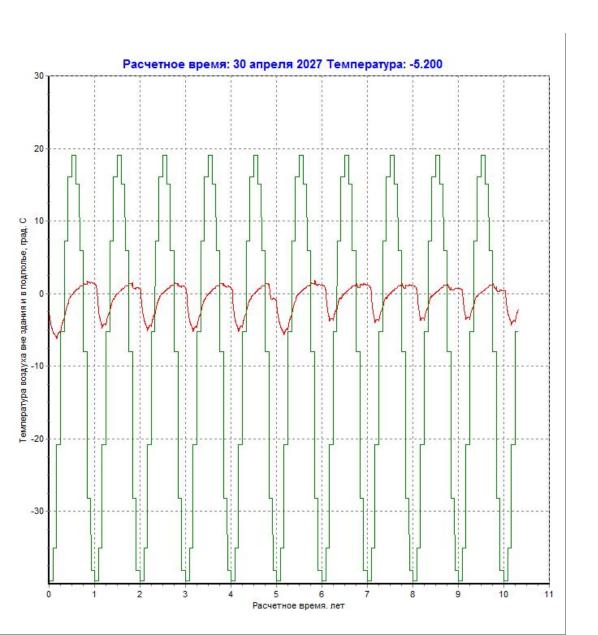
Тепло испарения и таяния снега (ккал/см²)

Составляющ	Месяцы														
ая теплового баланса	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII			
Тепло испарения	0	0	0	1,0	2,8	3,5	4,1	2,7	0,7	0	0	0			
Тепло таяния снега	0	0	0	0,6	0	0	0	0	0	0	0	0			

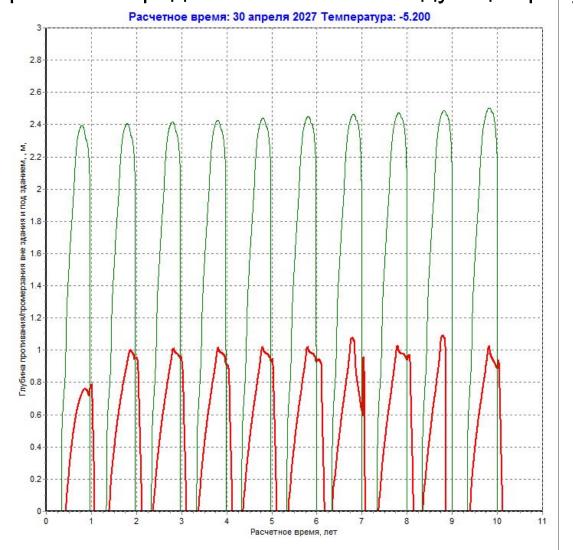
На рис. показаны зависимости глубины оттаивания под центром здания и величины плотности теплового потока через цокольное перекрытие от размеров основания зданий, при высоте подполья $H_{\rm n}=0.5$ м, $R_{\rm o,n}=R_{\rm o,c}=3.0$ (м².°С)/Вт, соответственно. Глубина оттаивания практически не зависит от длины здания, если последняя составляет более двух размеров ширины.


Глубина протаивания вечномерзлых грунтов

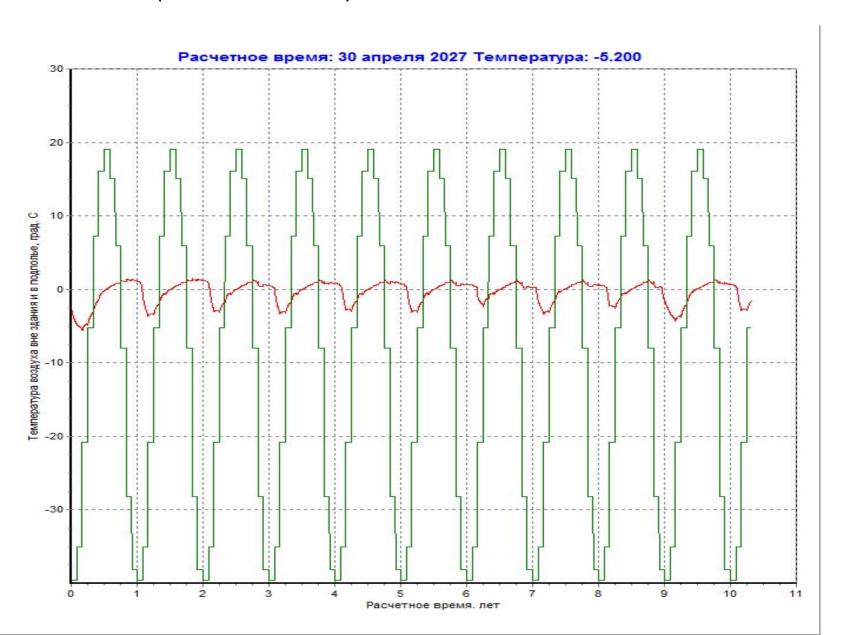
Контролируемы	Данные	Одномерная	Трехмерная
й параметр	натурных	модель	модель
	обследований		
Максимальная			
глубина			
протаивания, м	2,15	2,08	1,98
	2,10	2,00	1,50
Глубина			
протаивания на			
1 августа, м	1 65	1.50	1 55
	1,65	1,59	1,55


В качестве теплоизоляции принята минеральная плита с коэффициентом теплопроводности $\lambda = 0.042$ Bt/м град. Расчеты проводились для двух типов зданий при использовании двух вариантов теплозащиты с толщиной слоя 0,05 и 0,1 м, соответственно. Первый тип (1) относится к зданию с размерами в плане 15х30м, второй тип (2) здание Гобразной конфигурации в плане, образованное примыканием друг к другу его частей с размерами 20х30м.

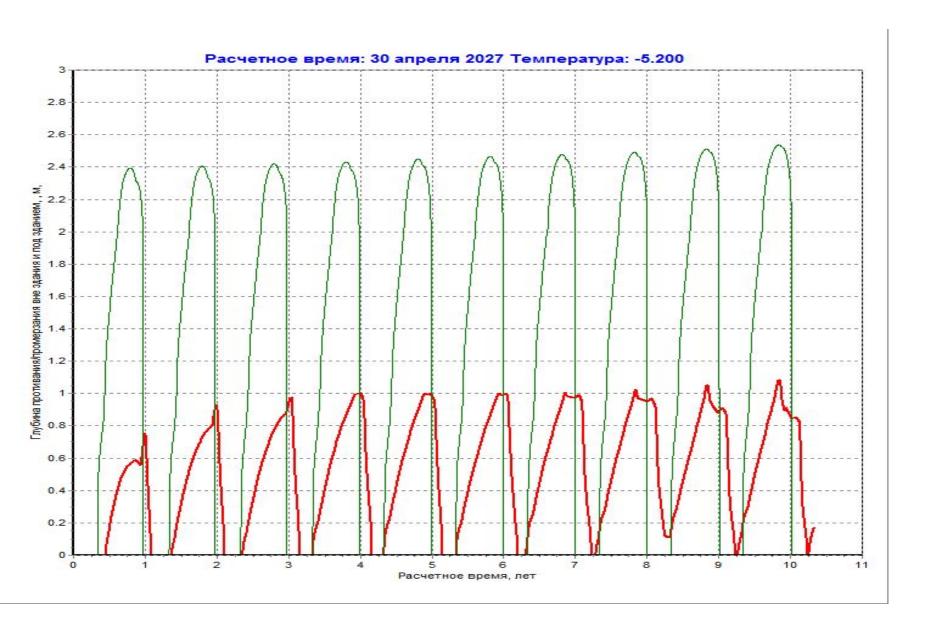
С учетом установления многолетнего температурного режима грунтов оснований, расчетное время принято до 10 лет.


Рис. Динамика глубины оттаивания грунтов под зданием (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,05 м.

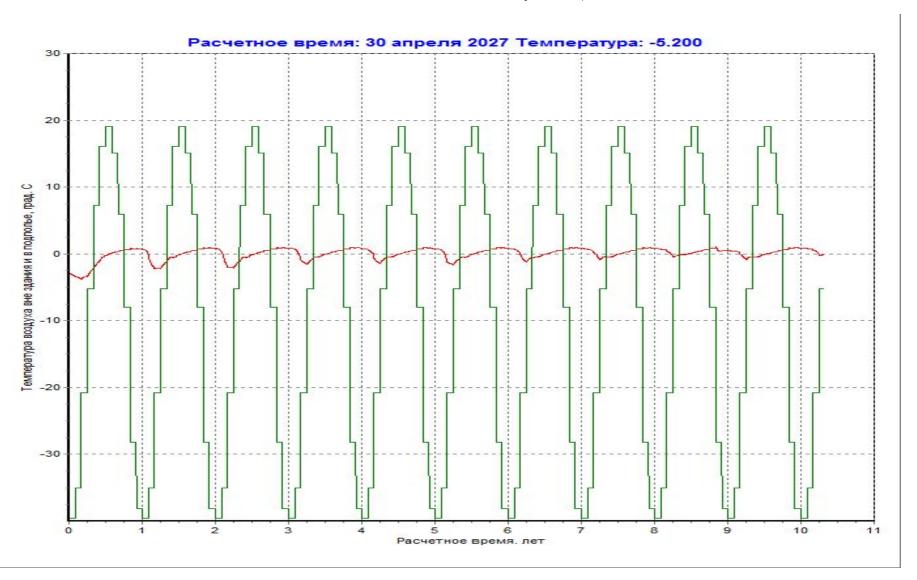
Динамика изменения температуры воздуха в подполье (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,05 м.



Для варианта со зданием Г – образной формы в плане, результаты расчетов представлены на последующих рисунках.



Динамика глубины оттаивания грунтов под зданием (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,05 м.


Динамика изменения температуры воздуха в подполье (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,05 м.

Динамика глубины оттаивания грунтов под зданием (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,1 м.

Динамика изменения температуры воздуха в подполье (красная линия) и вне здания (зеленая линия) по годам. Толщина теплоизоляции 0,1 м.

Суммарный перепад давлений на наружной и внутренней поверхностях ограждающих конструкций, в соответствии с гл.7 СП 50.13330.2012, определяется по формуле:

$$\Delta p = 0.55H(\gamma_{\mu} - \gamma_{e}) + 0.03\gamma_{\mu}\upsilon^{2}$$

Скорость ветра, м/с.

где H – высота здания (от уровня пола первого этажа до верха вытяжной шахты), м;

 $\gamma_{_{\! H}}, \ \gamma_{_{\! g}}$ — удельные веса соответственно наружного и внутреннего воздуха, $H/m^3;$

Воздухопроницаемость ограждающих конструкций находится в прямой пропорциональной зависимости от перепада давлений. Перепад давлений зависит от разницы удельных весов воздуха, что, в свою очередь, зависит от перепада температур. Соответственно, повышение температуры в подполье значительно снизить инфильтрацию холодного воздуха, а совместно с снижением теплопереноса через цокольное перекрытие

- На основании проведенных численных расчетов с применением программы расчета можно сделать следующие выводы:
- •Утепление стенок подполья значительно повышает температуру внутри подполья;
- •Вариацией толщины утеплителя можно выбрать вариант, при котором будет исключено формирование чаши оттаивания при повышении температуры в подполье;
- •Повышение температуры подполья значительно снизит инфильтрационную составляющую тепловых потерь;
- •Снижение влияния теплопроводных включений и инфильтрации воздуха приведет к повышению температуры пола;
- •Будет достигнута экономия на отопление здания за счет снижения тепловых потерь.