
8. Concurrency

2. Synchronization



Synchronization

• Threads communicate primarily by sharing 
access to fields and the objects reference 
fields refer to. 

• Such communication is extremely efficient
• Errors possible: thread interference
• The tool needed to prevent these errors is 

synchronization.

* InfopulseTraining Center 2



Thread Interference Example
class Counter {    

private int c = 0;     
public void increment() {        
c++;    

}     
public void decrement() {        
c--;    

}     
public int value() {
        return c;    
} 

}

* InfopulseTraining Center 3



Thread Interference I

• Interference happens when two 
operations, running in different threads, 
but acting on the same data, interleave

• Single expression c++ can be decomposed 
into three steps:
– Retrieve the current value of c.
– Increment the retrieved value by 1.
– Store the incremented value back in c.

* InfopulseTraining Center 4



Thread Interference II

1. Thread A: Retrieve c.
2. Thread B: Retrieve c.
3. Thread A: Increment retrieved value; 

result is 1.
4. Thread B: Decrement retrieved value; 

result is -1.
5. Thread A: Store result in c; c is now 1.
6. Thread B: Store result in c; c is now -1.

* InfopulseTraining Center 5



Thread Interference III

• Thread A's result is lost, overwritten by 
Thread B.

• Because they are unpredictable, thread 
interference bugs can be difficult to detect 
and fix.

* InfopulseTraining Center 6



Exercise: Thread Inference
Modify 511DepoSum project as follows:
• Create new method add100(int index) in the 

ListDepo class that adds 100.0 to the deposit 
with given index. Sleep the current thread for 1 
sec before saving result to the deposit

• Create ThreadTest class implements Runnable 
interface with field ListDepo field. Run method of 
the class should invoke add100 method

• Try to modify the same deposit from two threads 
using ThreadTest class 

* InfopulseTraining Center 7



Exercise: Thread Inference

• See 821Unsync project for the full text.

* InfopulseTraining Center 8



Synchronized Methods I
public class SynchronizedCounter {    

private int c = 0;     
public synchronized void increment() {        
c++;

    }
     public synchronized void decrement() {

        c--;    
}     
public synchronized int value() {
        return c;    
}

}

* InfopulseTraining Center 9



Synchronized Methods II

• When one thread is executing a 
synchronized method for an object, all 
other threads that invoke synchronized 
methods for the same object block 
(suspend execution) until the first thread is 
done with the object

• Synchronized method exits guarantees 
that changes to the state of the object are 
visible to all threads

* InfopulseTraining Center 10



Exercise: Synchronization

• Modify 821Unsync project using synchronized 
add100 method and check result. 

* InfopulseTraining Center 11



Constructor Synchronization

• Constructors cannot be synchronized — 
using the synchronized keyword with a 
constructor is a syntax error. 

• Synchronizing constructors doesn't make 
sense, because only the thread that 
creates an object should have access to it 
while it is being constructed

* InfopulseTraining Center 12



Intrinsic Locks and Synchronization 

• When a task wishes to execute a piece of 
code guarded by the synchronized 
keyword, it 
– checks to see if the lock is available
– then acquires it, 
– executes the code
– and releases it. 

* InfopulseTraining Center 13



Intrinsic Locks

• If a task is in a call to one of the 
synchronized methods, all other tasks are 
blocked from entering any of the 
synchronized methods of that object until 
the first task returns from its call 

• A static synchronized method invocation 
the thread acquires the intrinsic lock for 
the Class object associated with the class

* InfopulseTraining Center 14



Concurrency Class Fields 

• Especially important to make fields private 
when working with concurrency 

• Otherwise the synchronized keyword 
cannot prevent another task from 
accessing a field directly, and thus 
producing collisions

* InfopulseTraining Center 15



Synchronized Statements
• Unlike synchronized methods, 

synchronized statements must specify the 
object that provides the intrinsic lock:

public void addName(String name) {
synchronized(this) { 
lastName = name; 
nameCount++; 

} 
nameList.add(name); 

} 

* InfopulseTraining Center 16



Cooperation Between Tasks
• How to make tasks cooperate with each 

other, so that multiple tasks can work 
together to solve a problem?

• To accomplish this we use the mutex, 
which in this case guarantees that only 
one task can respond to a signal

• This eliminates any possible race 
conditions, which is safely implemented 
using the Object methods wait( ) and 
notifyAll( )

* InfopulseTraining Center 17



wait() Method
• wait( ) allows you to wait for a change in 

some condition that is outside the control 
of the forces in the current method

• Often, this condition will be changed by 
another task

• You don’t want to idly loop while testing 
the condition inside your task; this is called 
busy waiting, and it’s usually a bad use of 
CPU cycles

* InfopulseTraining Center 18



Don't do this! 

public void guardedJoy() { 
// Simple loop guard. Wastes 
// processor time. Don't do this! 
while(!joy) { } 
System.out.println("Joy has been achieved!"); 

} 

* InfopulseTraining Center 19



wait() Example (1 of 2)

public synchronized guardedJoy() { 
while(!joy) { 

 try { wait(); } 
catch (InterruptedException e) {} 

} 
System.out.println("Joy and efficiency 
have been achieved!"); 

} 
* InfopulseTraining Center 20



notify() / notifyAll() Methods

• wait( ) suspends the task while waiting for 
the world to change

• Only when a notify( ) or notifyAll( ) occurs - 
suggesting that something of interest may 
have happened - does the task wake up 
and check for changes

• Thus, wait( ) provides a way to 
synchronize activities between tasks

* InfopulseTraining Center 21



wait() Example (2 of 2)

public synchronized notifyJoy() { 
joy = true; 
notifyAll(); 

} 

* InfopulseTraining Center 22



Deadlock

• Deadlock describes a situation where two 
or more threads are blocked forever, 
waiting for each other

* InfopulseTraining Center 23



Manuals

• http://docs.oracle.com/javase/tutorial/esse
ntial/concurrency/index.html

* InfopulseTraining Center 24


