

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Институт нефти и газа

Кафедра Разработка и эксплуатация нефтяных и газовых месторождений

Дисциплина: Капитальный и подземный ремонт скважин

Тема:

Устранение аварий, допущенных в процессе эксплуатации или ремонта скважин

Т.В. Леонова

Авария

Это нарушение непрерывности технологического процесса ремонта скважин в процессе исполнения плана работ, связанное с эксплуатацией технологического инструмента и погружного оборудования, требующее для ее ликвидации проведения специальных работ в эксплутационной колонне не предусмотренных планом работ.

Осложение

Это нарушение непрерывности технологического процесса ремонта скважин в процессе исполнения основного плана работ, вызванные явлениями горно-геологического и технологического характера, требующее увеличение времени производственного процесса или составления дополнительного плана работ.

Аварии классифицируются по следующим видам:

- в процессе эксплуатации.
- в процессе ремонта
- в процессе ликвидации аварии.

Аварии классифицируются по следующим элементам:

- Аварии с элементами подземного оборудования УЭЦН.
- Аварии с элементами подземного оборудования ШГНУ.
- Аварии с элементами НКТ и бурильной колонной.
- Аварии с технологическим инструментом и оборудованием, используемым в процессе ТКРС и освоения скважин.
- Аварии с геофизическим оборудованием и приборами
- Аварии с технологическими и подвесными патрубками и переводниками.

При возникновении аварии: мастер бригады ТКРС (старший оператор, бурильщик)

- 1. незамедлительно сообщает начальнику смены ЦИТС сервисного предприятия и
- 2. принимает необходимые меры по предупреждению осложнения аварии,
- 3. сохраняет обстановку на устье скважины и аварийное оборудование без изменения до прибытия членов комиссии. в случае если это:
 - не создает угрозу жизни, и здоровью людей находящихся в непосредственной близости от места аварии, или
 - может привести к порче оборудования, на сумму значительно превышающую стоимость ликвидации последствий произошедшей аварии.

<u>Работы по ликвидации аварии производят:</u>

в соответствии с утвержденным планом работ Ппод руководством мастера по сложным работам Ппри участии мастера по ремонту скважин.

Аварии при геофизических работах ликвидируются в соответствии с планом работ составленным совместно с НГДП и исполнителем геофизических работ.

Работы по освобождению прихваченного инструмента с применением взрывных устройств проводят по специальному плану, согласованному с геофизическим предприятием.

Перед написанием плана работ на ликвидацию аварии необходимо провести:

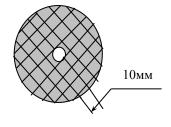
I. <u>Теоретическое обследование</u> ознакомившись с:

- □ материалом о работе скважины в прошлом,
- □ с конструкцией скважины,
- □ с характером ранее проводимых работ (до ремонта и в процессе ремонта).

<u>При необходимости :</u> (по дополнительному плану работ)

II. <u>Практическое обследование</u> <u>спуском :</u>

- □ Торцовой печати,
- □ Конусной печати,
- □ Боковой гидравлической печати,
- □ Специального крючка.

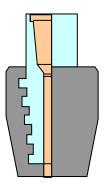

III. <u>Геофизические исследования</u>

Обследование печатью.

<u>Смятие колонны</u> - конусной и плоской, <u>Слом колонны</u> - конусной и плоской, <u>Состояние бурильной трубы или НКТ</u> - плоской <u>Посторонние предметы на забое</u> - плоской <u>Форма и размер повреждения эксплутацилонной колонны</u> боковой гидравлической

при возможном наличии на «голове» кабеля или проволоки - обследование печатью ЗАПРЕЩАЕТСЯ

Присоединительная резьба Свинец Матрица D — д



Плоская печать

Печать должна быть:

- □ полномерной
- ☐ диаметр (D) на 6-7 мм меньше внутреннего диаметра колонны
- □ с циркуляционным отверстием диметром 28 мм
- с нанесенной сеткой (с длиной стороны квадрата 10 мм)
- с резьбовым соединением (сварочное соединение не допускается)

Конусная печать

Работа свинцовой печатью

- □ Спуск производится с замером труб, со скоростью не более 0,25 м/с
 □ За 10 метров до объекта обследования спуск прекращается *
 □ Собирается промывочное оборудование
 □ Производится допуск (скорость не более 0,1 м/с) печати с промывкой ЖГ в объеме не менее объема труб и
 □ Одноразовая посадка печати с непрекращающейся циркуляцией
 □ Осевая нагрузка = 20 Кн (2 тонны)**
 □ Отрыв от забоя, разборка промывочного оборудования и подъем
- * При остановке печати до планируемой глубины:
- Фиксируется глубина посадки

печати***

- Производится ее подъем. Повторные посадки той же печати запрещены***.
- ** Если можно предположить, что место слома имеет очень острые кромки, то нагрузка должна быть не более 15 кН (1,5 тонн) (во избежание оставления в скважине узлов печати).
- *** Размер последующих спускаемых печатей (по сравнению с предыдущей) должен быть уменьшен на 6-12мм для получения четкого отпечатка и конфигурации нарушения

тфитш

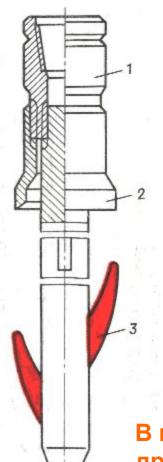
/// - клапаны; // - резиновые секции; 1,13 - переводники; 2, 15 - шары; 3 - корпус верхнего клапана; 4 - шток; 17 - баллон резиновый; 12 - нижний ниппель; 14 - корпус нижнего клапана; 16 - шток; 17 - жидкости; 11 - баллон резиновый; 12 - нижний ниппель; 14 - корпус нижнего клапана; 16 - шток; 17 -

Печать гидравлическая (боковая)

Принцип работы:

□Печать спускается к месту получения отпечатка.

□ Внутри колонны в течение 5 -15 мин поддерживается давление1—3 МПа (10 – 30 атм). При создании давления расширяющийся резиновый баллон прижимается к поверхности трубы.


□Поскольку наружная поверхность баллона покрыта двух миллиметровым слоем резины, на ней получается отпечаток поверхности трубы. Если труба имеет нарушения или какие-либо дефекты, то они также воспроизводятся на резине.

□После получения отпечатка давление снижается и

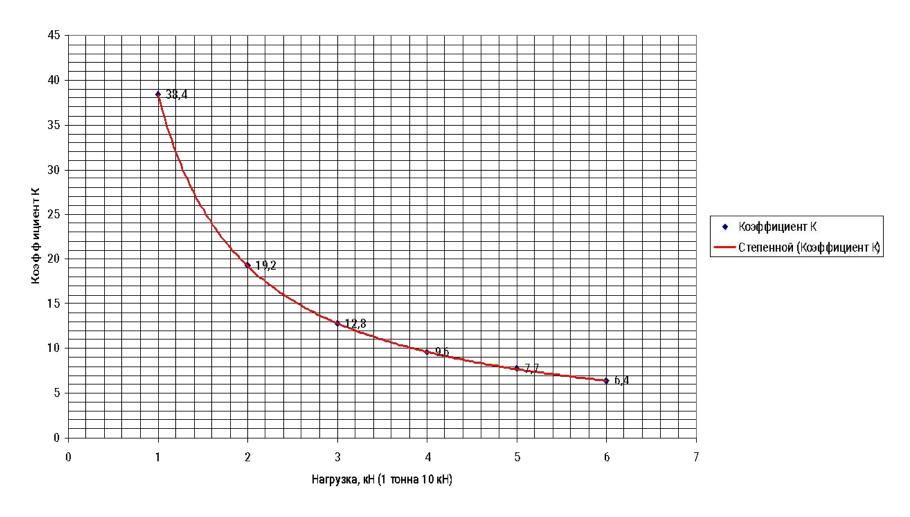
□Печать поднимается.

/,// - клапаны; /// - резиновые секции; 1,13 - переводники; 2, 15 - шары; 3 - корпус верхнего клапана; 4 — направляющий конус; 5 - гайка натяжения муфт; 6 — муфта крепления баллона; 7 - верхний ниппель; 8 - манжеты; 9 - труба центральная; 10 -труба для межсекционного перетока жидкости; 11 - баллон резиновый; 12 - нижний ниппель; 14 - корпус нижнего клапана; 16 - шток; 17 -штифт

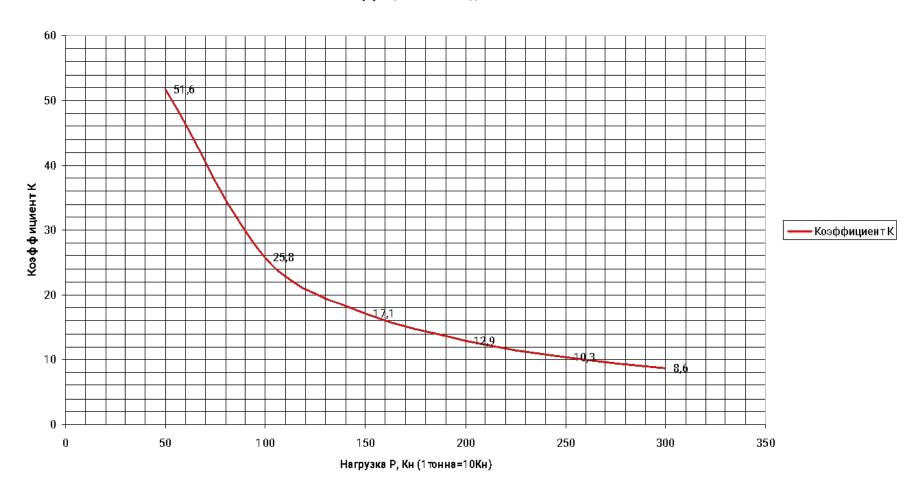
Обследование спецкрючком. (проводится как ловильные работы)

<u>При возможном наличии на «голове» кабеля или проволоки</u> обследование первоначально производится спецкрючком с ограничителем.

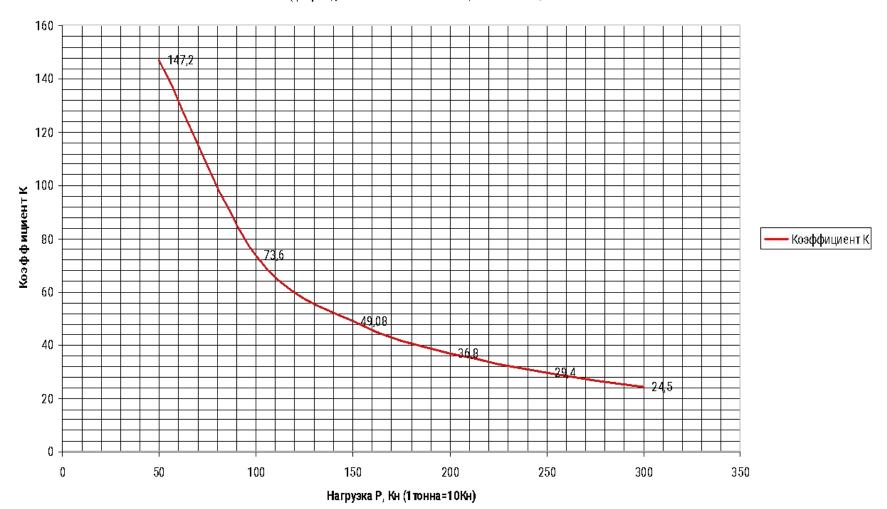
- 1 резьбовое соединение (сварочное соединение не допускается)
- **2** ограничительная воронка для исключения образования пробок над крючком диаметр которой не должен превышать диаметра шаблона обсадной колонны.
- **3** крючки специальной формы (под соответствующий кабель или проволоку). Обварены полностью.


В необсаженном стволе применение ограничительных воронок и других резко выступающих узлов на ловителях кабеля запрещается

во избежание образования пробок над ловителем и последующего заклинивания кабеля при входе в обсадную колонну.


При прихвате колонны труб или внутрискважинного оборудования определяют место прихвата:

- Геофизическими методами
- -Расчетно практическим путём
- □ При собственном весе инструмента на трубу ставится метка.
- □На трубу создается вертикальная растягивающая нагрузка (Например 10тн=100Кн).
- □ Ставится вторая шкимка, замеряется удлинение (растяжение) труб в сантиметрах, например 25 см.
- □ По графику определяют значение K, в нашем случае K=25,8 (график для НКТ 73 мм с толщиной стенки 5,5 мм).
- □Умножают К на удлинение: 25,8x25=645, это приближенное значение места прихвата в метрах


Зависимость К отнагрузки для НКТ 60,3 мм

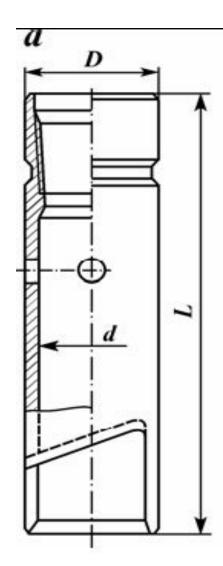
КоэффициентК отР для НКТ 73 мм

Коэффициент К от Р (график для колонны 146 мм с толщиной стенки 7,7 мм

По результатам обследований производится:

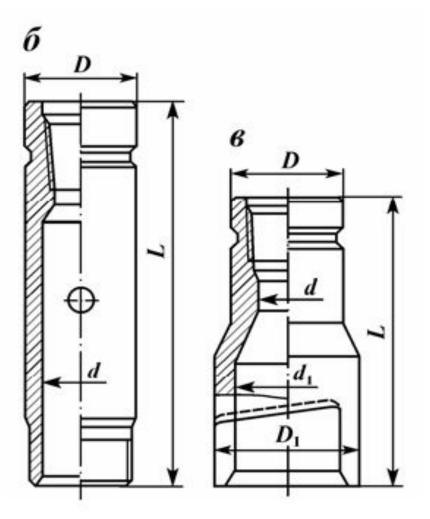
- написание плана работ на ликвидацию аварии
- □ завоз на скважину комплекта ловильного инструмента, фрез, печатей (для дополнительного обследования) и прочего необходимого инструмента и оборудования.

шодей хічней повитеней пинамудшэни пічней приней пинамудшэни пічней повитьный инструмент и методика ловильных работ

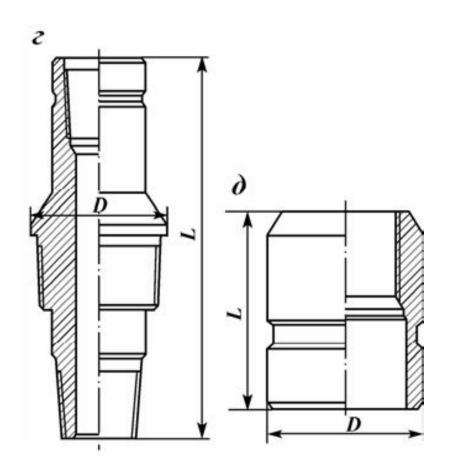

<u> Центрирующие приспособления:</u>

<u>Предназначены</u> для взаимной ориентации в скважине ловильного инструмента и ловимого объекта.

Элементы центрирующих приспособлений


- □Направление с вырезом
- □Направление с резьбой под воронку
- □Воронка
- □Головка
- □Кольцо

Выпускаются правые и левые приспособления

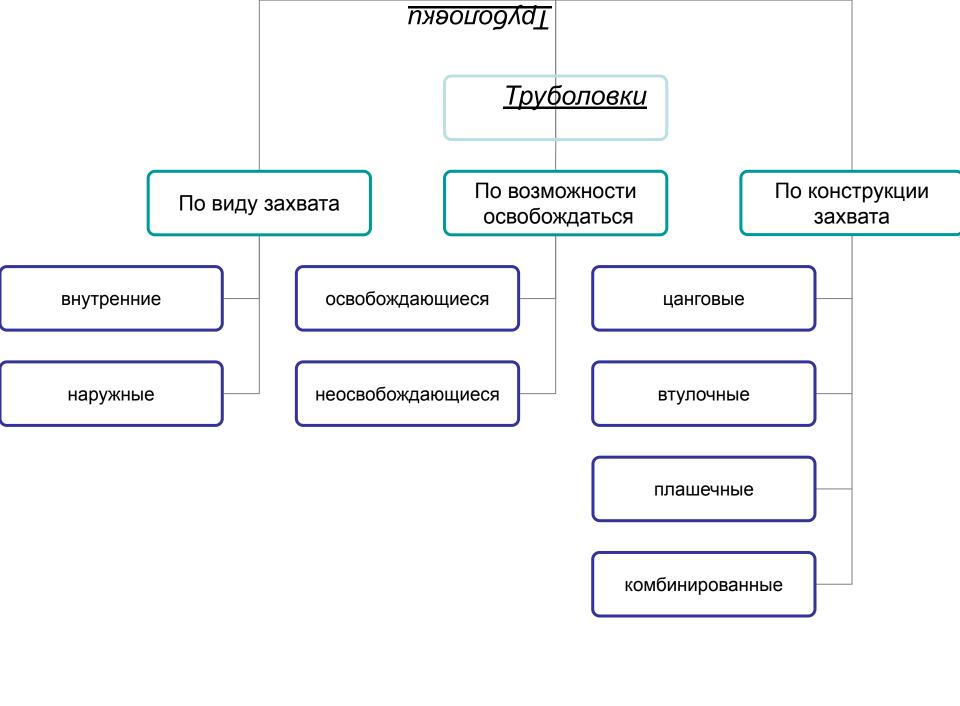

а) *Направление с вырезом*

Применяют для центрирования ловильного инструмента в скважинах, где невозможно использовать воронку из — за Недостаточного зазора между наружной поверхностью воронки и стенкой скважины

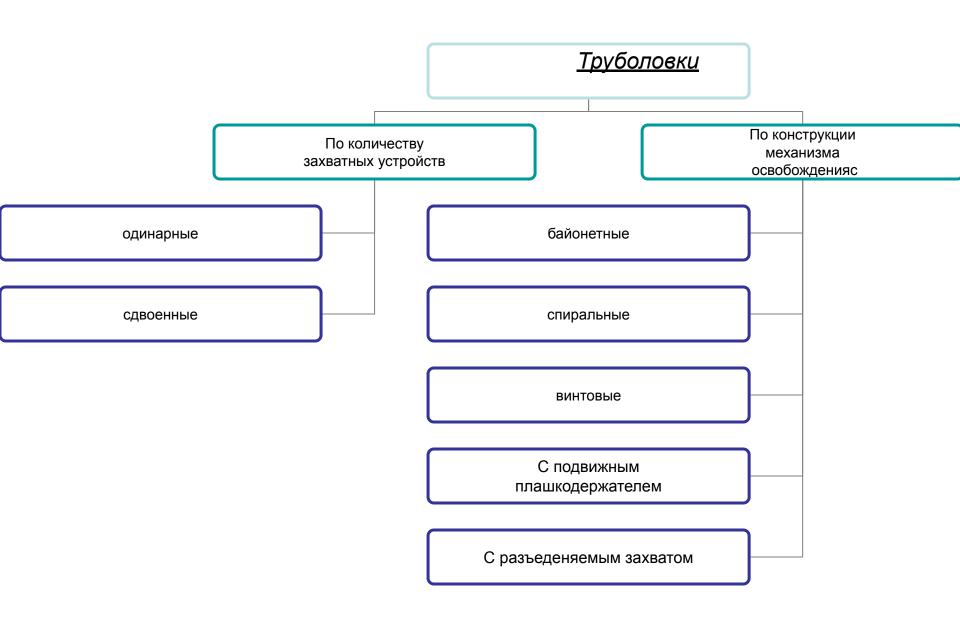
б) <u>Направление с резьбой под</u> воронку

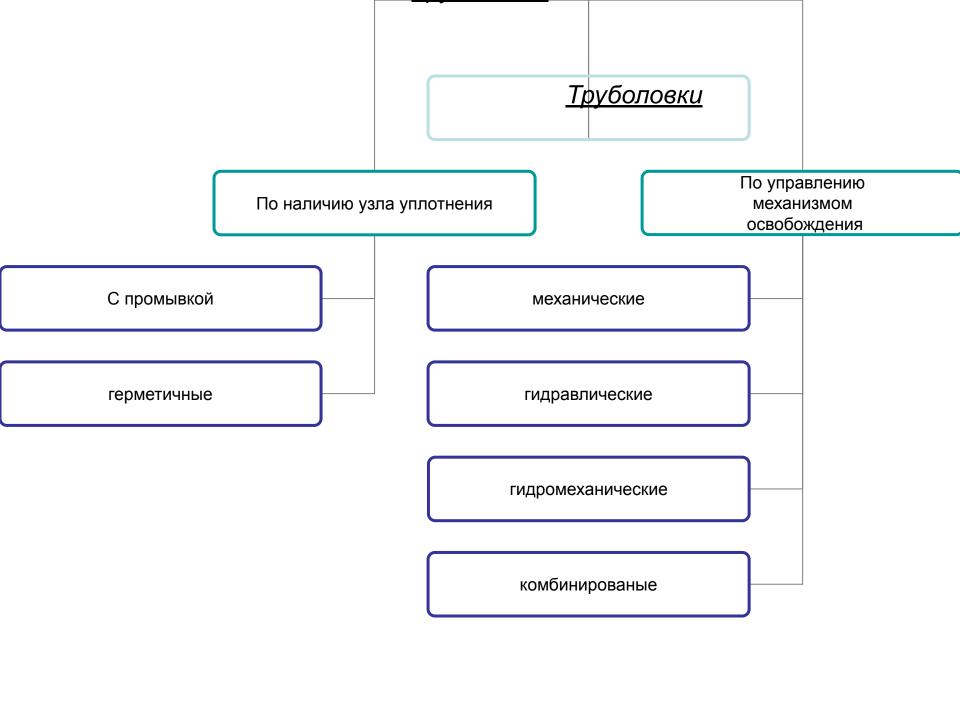
в) *Воронка*

г) *Головка*

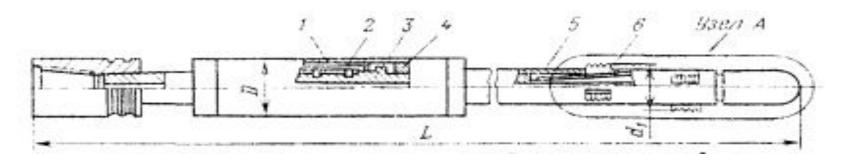

в) *Кольцо*

На головке с обоих концов замковые присоединительные резьбы для присоединения БТ и ловителей. В средней части имеется резьба направления


Труболовки - ловильный инструмент для извлечения труб и других цилиндрических объектов


Изготавливаются с <u>правой</u> и <u>левой</u> резьбой

Захватное устройство всех труболовок – клинового типа


<u>i py ddiiddka</u>

<u>Труболовка внутренняя освобождения там ТВМ 1</u>

<u>Труболовка внутренняя освобождающаяся плашечная с механическим механизмом освобождения типа ТВМ 1</u>

Состоит из механизмов:

□захвата

□фиксации плашек в освобожденном положении

Захват ловимой колонны осуществляется

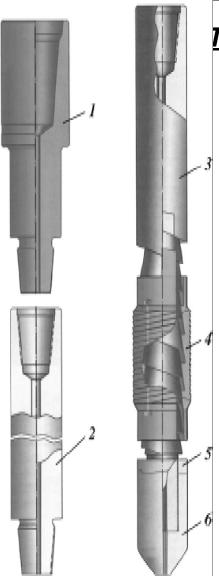
при подъеме труболовки за счет перемещения плашек по наклонным пазам типа "ласточкин хвост" корпуса и заклинивания их между корпусом и внутренней поверхностью трубы.

Механизм освобождения приводится в действие

перемещением труболовки вниз до контакта верхнего торца ловимой колонны с нижним торцем муфты механизма освобождения и последующим вращением труболовки.

BT snum

<u>Труболовка внутренняя не освобождающаяся</u> <u>плашечная типа ТВ</u>



Состоит только из механизма:

Пзахвата

Захват ловимой колонны осуществляется

при подъеме труболовки за счет перемещения плашек по наклонным пазам типа "ласточкин хвост" корпуса и заклинивания их между корпусом и внутренней поверхностью трубы.

<u>Груболовка внутренняя освобождающаяся цанговая</u> <u>типа Т</u>

Состоит:

- 1 переводник; 2 удлинитель; 3 корпус;
- 4 цанговый захват; 5 разъеденительное кольцо;
- 6 наконечник.

Захват ловимой колонны осуществляется

за счет наличия конических спиральных поверхностей, выполненных на наружной поверхности корпуса и взаимодействующей с ней внутренней поверхности цанги .

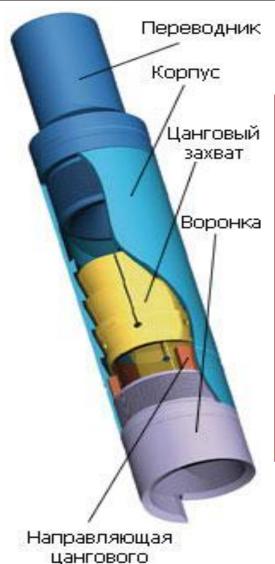
_

<u>Методика ловильных работ внутренними труболовками типа ТВМ *</u>

- I. Подготовительные работы
- □ Осмотр: дефекты,трещины,забои
- □ Проверить работу механизмом захвата и освобождения
- В вертикальном положении
- Плашки должны утопать в окна, плавно без рывков
- Вращая корпус (по часовой для левой и против часовой для правой) выводят фиксатор из зацепления с корпусом, плашкодержатель переместившись в крайне верхнее положение освобождает плашки
 - * Методика ловильных работ одинакова для всех внутренних плашечных труболовок

<u>Методика ловильных работ внутренними труболовками типа ТВМ</u> Ловильные работы Спуск производится с замером труб, со скоростью не более 0,25 м/с За 30 метров до ловимых труб спуск прекращается Восстанавливается циркуляция Производится допуск (скорость не более 0,1 м/с) и определяется верхний конец ловимых труб. Контролируя вес по ИВЭ труболовка медленно вводится внутрь ловимого объекта. (Снижение веса и повышение давления на насосе) Моменты посадки до и после ввода фиксируются маркировочной лентой. П Убедившись, что труболовка полностью вошла в объект ее приподымают, для захвата. Увеличение веса свидетельствует об успешном захвате. Расхаживанием в пределах допустимой грузоподъемности приступают к подъему инструмента.

Методика ловильных внутренними труболовками типа ТВМ ///. Осложнения


- □ При не возможности произвести подъем, труболовку следует освободить следующим образом:
- Резко опускают колонну труб, для страгивания плашек.
- Затем вращают колонну ротором не менее 12 оборотов (против часовой для левой, и по часовой для правой)
- По показаниям ИВЭ определяют освобождение труболовки.
 Извлекают ее из скважины.
 - IV. Освобождение от ловимого объекта на поверхности
- □ Приставляют деревянный брусок к муфте труболовки
- □ Нанесением удара по бруску страгивают плашки

Особенности ловильных работ внутренними труболовками с цанговым захватом

- □ Труболовку вводят в ловимый объект вращением в право (при этом ловильная втулка находится в нижнем положении)
- ловильная втулка упруго деформируясь входит внутрь объекта.
 Вращение прекращается.
- □ Продолжая медленный спуск делают 1 1,5 оборота в лево.
 Ловильная втулка перемещается в вверхнее положение вместе с распорным кольцом.
- □ После подъема ловителя его освобождают:
- провернув на 1 1,5 оборота
- извлекают «стягиванием»

Рекомендуемые допустимые растягивающие нагрузки и крутящий момент при ловильных нагрузках

Труболовка	Наружный диаметр стержня, мм	Грузоподъемность, тн	Допустимый крутящий момент, Н*м
TB 60 - 92	47	25	350
TBM 60 - 1	47	25	350
TB 73 - 92	58	40	500
TBM 73 - 1	58	40	500
TB 89 - 110	73	70	600
TBM 89 - 1	73	70	600

захвата

<u>Труболовка наружная освобождающаяся типа</u> <u>ОВ и ОВТ</u>

Включает в себя ряд захватов и направляющих:

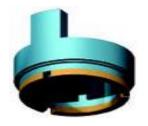
□Цанговых □Спиральных

При извлечении колонн, верхняя часть которых «голова» имеет максимальный для применяемого типоразмера овершота диаметр, используются *спиральные захваты*, в остальных случаях – *цанговые*

рабочий диапазон как спиральных, так и цанговых захватов составляет относительно номинального размера +0,8...-3 мм.

захвата

Устранение аварий, допущенных в процессе эксплуатации или ремонта скважин


Цанговые захваты могут применяться с фрезерующими направляющими, <u>позволяющими производить очистку</u> захватываемого объекта от <u>заусенцев и различных</u> <u>отложений</u>.

стандартная

фрезерующая

фрезерующая, армированная твердым сплавом

Процесс захвата:

осуществляется овершотом за счет наличия конических спиральных поверхностей, выполненых на внутренней поверхности корпуса и взаимодействующей с ней наружной поверхности цангового или спирального захватов.

<u>При необходимости герметизации</u> <u>соединения «овершот-извлекаемая</u> <u>колонна»</u>

предусмотрена возможность установки уплотнительных манжетных пакеров: <u>типа «А»</u> - при установке спирального захвата или

типа «Р» и кольца - при установке цангового захвата.

Типоразмеры фрезерующей направляющей и пакеров должны соответствовать типоразмеру применяемого захвата.

Устранение аварий, допущенных в процессе эксплуатации или ремонта скважин

Шифр типоразмера овершота	OB 90	OBT 90	OB 114	OBT 114
1 . Наружный диаметр овершота, мм	90,5	90,5	114,6	114,6
2. Грузоподъемность, кН	600	1000	960	1640
3. Максимальное значение номинального размера, мм: — спирального захвата — цангового захвата	73 60,3	69,8 57,1	92,9 82,5	85,7 76,2
4. Присоединительная резьба	3 -73	3-73	3 -76	3-76

Труболовка наружная неосвобождающаяся типа ТЛ 1

<u>Комплект цанг позволяет</u> <u>извлекать:</u>

- **ДНКТ** за тело -48;60;73;89
- **ДНКТ** за муфту − 60;73
- **ДНКТ** под муфту 60;73
- Насосы НСВ 32;44;57
- Забойные двигатели Д85 и Д 1-88

<u>Допусмая осевая нагрузка- 50 тн</u>

<u>Методика ловильных работ труболовкой ТЛ 1</u>

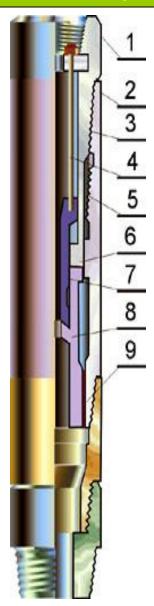
I. Подготовительные работы

- □ Осмотр: дефекты,трещины,забои
- □ Покройте графитной смазкой коническую поверхность
- □ Проверьте:
- Легкость перемещения цанги
- Диаметр цанги (Д цанги меньше Д ловимого объекта на 2- 5 мм)
- Проходное сечение направляющей воронки

Методика ловильных работ труболовкой ТЛ 1

II. Ловильные работы
Спуск производится с замером труб, со скоростью не более 0,25 м/с
За 10 метров до ловимых труб спуск прекращается
Производится допуск (скорость не более 0,1 м/с) и определяется
верхний конец ловимых труб.
Контролируя вес по ИВЭ труболовка, без вращения, накрывает
ловимый объект. (Заход обеспечивает специальный скос)
Моменты посадки до и после ввода фиксируются маркировочной лентой.
Убедившись, что труболовка накрыла объект ее приподымают, для
захвата. Увеличение веса свидетельствует об успешном захвате.
Расхаживанием в пределах допустимой грузоподъемности
приступают к подъему инструмента.

Особенности ловильных работ внутренними труболовками с цанговым захватом

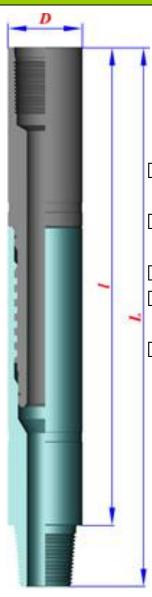

- □ Труболовку вводят в ловимый объект вращением в право (при этом ловильная втулка находится в нижнем положении)
- ловильная втулка упруго деформируясь входит внутрь объекта.
 Вращение прекращается.
- □ Продолжая медленный спуск делают 1 1,5 оборота в лево.
 Ловильная втулка перемещается в вверхнее положение вместе с распорным кольцом.
- □ После подъема ловителя его освобождают:
- провернув на 1 1,5 оборота
- извлекают «стягиванием»

<u>Безопасные переводники</u>

<u>Предназначены</u>

для отсоединения от прихваченного инструмента в заданном месте с последующим присоединением ловильной компоновки к ловильной резьбе РК.

Безопасный переводник позволяет быстро освободить бурильную колонну (колонну НКТ) в случае прихвата, оставляя минимум трубы в скважине, таким образом сокращая объем ловильных работ или работ по зарезке нового ствола.


<u>Безопасные переводники типа БП</u>

ОАО НПО "Буровая техника" - ВНИИБТ

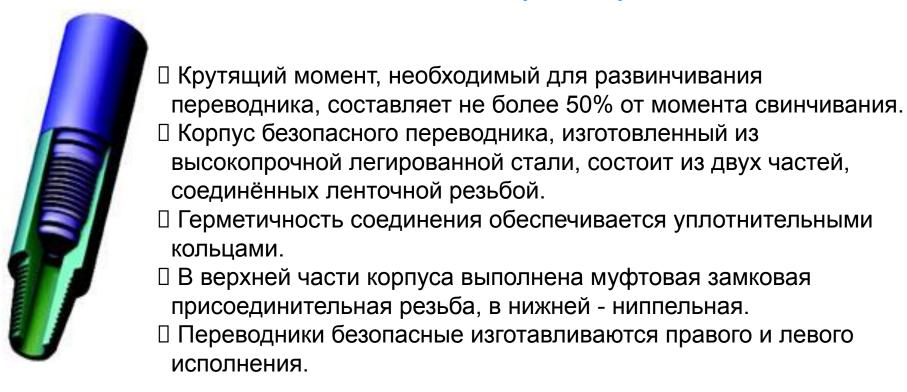
Осевая нагрузка и крутящий момент передаются от ниппеля 1 к корпусу 2 через продольные шлицы 9 и торцевые зубья 6.

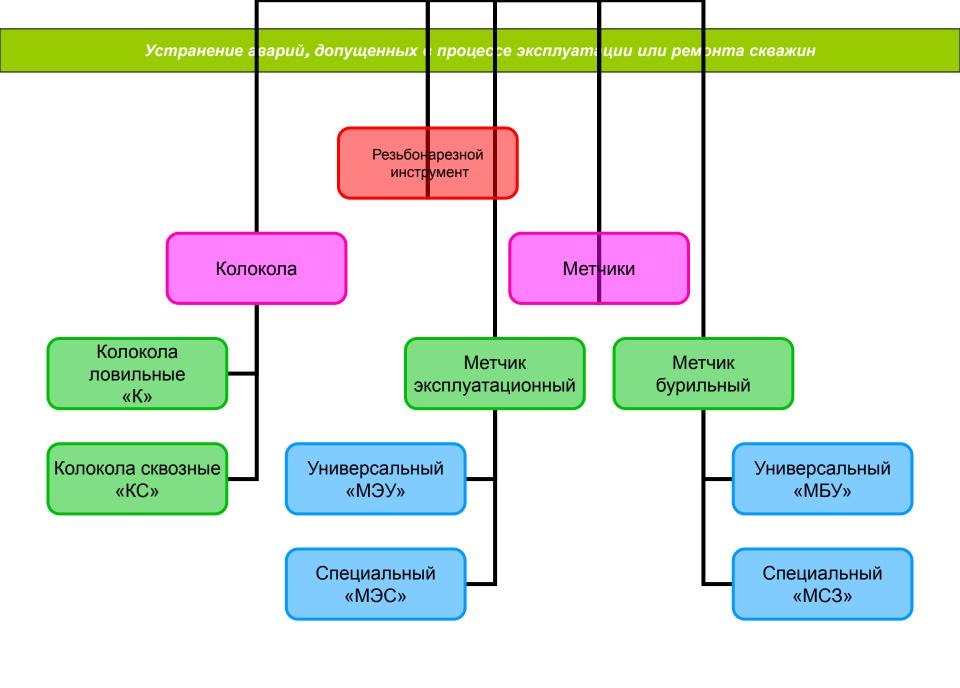
Для отсоединения бурильной колонны по РК в трубы сбрасывают шар, который перекрывает канал по втулке 7. Под действием давления срабатывают разрывные болты 4. Муфта 8 перемещается вниз, освобождая зацепления. Фиксация левой резьбы 3 снимается, и по ней осуществляется разъединение колонны правым вращением ротора.

Перепад давления на шаре: 100 атм РК90 Крутящий момент на разъединение: 3 кНм

<u>Безопасные переводники типа ПБ</u>

ООО фирма "Радиус-Сервис"

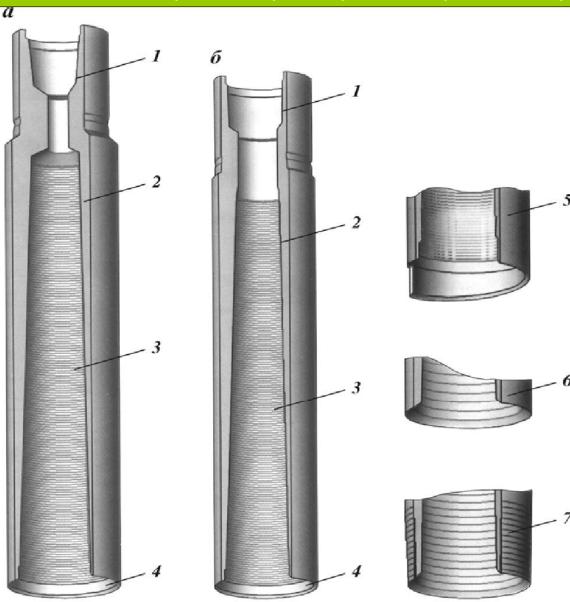

- □Простая конструкция, которая устраняет потребность в длинных процедурах разъединения.
- □ Соединение с крупной резьбой, которое не будет раскрепляться или задираться при работе в колонне.
- □ Стоек к вибрации, высоким осевым нагрузкам и вращающим моментам.
- □ Рассоединяется простым левым вращением при приложении момента, составляющего не более 40% момента затяжки инструмента.
- □ Уплотнительные кольца, установленные выше и ниже резьбы предотвращают ее размывание при работе. Кольца рассчитаны на длительную непрерывную работу для давления насоса до 400 кг/см2.


Момент раскрепления резьбы, - не более 480 кгс* м

ПБ -120РС

<u>Безопасные переводники типа БРП</u>

Сиб Трейд Сервис


Колокол ловильный «К» - нарезает резьбу на теле НКТ и бурильных труб (БТ)

Колокол сквозной «КС» - пропуская оборванный (безмуфтовый) конец ловимой трубы нарезает резьбу на наружной поверхности муфт НКТ и замков БТ

Все колокола выпускаются левые и правые.

<u>Правые</u> - для извлечения правых труб целиком и левых по частям (отворотом)

Левые - для извлечения левых труб целиком и правых по частям (отворотом)

- <u>а Колокол типа К;</u>
- <u>б Колокол типа КС;</u>
- 1 присоединительная резьба к колонне труб;
- **2** корпус;
- 3 ловильная резьба;
- 4 воронка(направ ление) с фаской;
- 5 воронка с выре зом (козырьком);
- 6 фаска;
- 7 резьба под воронку

У всех колоколов:

- -Продольные канавки, для создания режущей кромки и выхода стружки
- Конусность 1:16

Устранение аварий, допущенных в процессе эксплуатации или ремонта скважин

Типоразмер	Захватываемые диаметры, мм	Диаметр скважины в месте обрыва колонны труб, мм		Грузоподъемная сила, т (кН)
		Необсаженной	Обсаженной	
К 42 – 25	33 – 38	-	114 - 168	25 (250)
К 50 -34	42 – 46	-	114 - 168	35(350)
K 58 – 40	48 -54	-	114 - 168	45(450)
К 70 – 52	60 – 67	97 – 151	114 - 168	65(650)
K 85 – 64	73 – 82	108 – 161	127 – 178	75(750)
К 100 – 78	89 – 97	132 – 214	146 – 219	85(850)
К 100 - 91	102 - 108	140 - 214	168 - 219	100(1000)

Устранение аварий, допущенных в процессе эксплуатации или ремонта скважин

Типоразмер		Объект ловли		Диаметр скважины в месте обрыва колонны труб, мм	
	Замки БТ	Диаметры муфт	Диметры УБТ	Необсаженной	Обсаженной
КС 54-39	-	33	-	97-151	114-168
KC 69 – 52	-	42;48;50	-	97-151	114-168
KC 85 – 68	3H-80	60	-	108-161	127-178
КС 100 - 79	ЗН-95 ЗЛ-90	63; 73	89;95	132-214	146-219
KC 115 - 94	ЗН 108 ЗШ-108 ЗЛ - 110	89	108	151-214	168-219

Методика ловильных работ колоколами*

I. Подготовительные работы

□ Осмотр: дефекты,трещины,забои

□ Осмотр: ловильная резьба

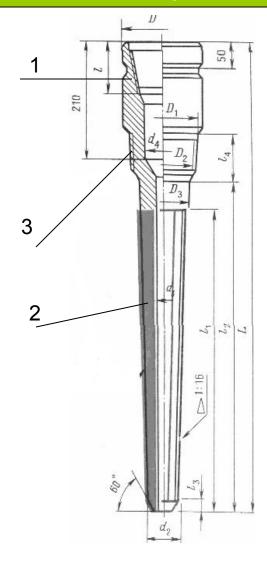
□ Наворачивается воронка с фаской или вырезом

^{*} Методика ловильных работ для всех колоколов одинаков

Методика ловильных работ колоколами

II. Ловильные работы
Спуск производится с замером труб, со скоростью не более 0,25 м/с
За 30 метров до ловимых труб спуск прекращается
Восстанавливается циркуляция
Производится допуск (скорость не более 0,1 м/с) и определяется
верхний конец ловимых труб (приложение осевой нагрузки не
допускается)
Делается отметка на рабочих трубах
Инструмент приподнимается на 0,5 – 1 метр
Не прекращая циркуляции, медленным вращением накрывают
верхний конец ловимой трубы
Под начальной осевой нагрузкой 150 – 200 кг (0,15 – 0,2 кН) и
частоте вращения ротора 15 – 20 об/мин приступают к нарезке
резьбы
Постепенно увеличивая нагрузку до 4 тонн (40 кН) нарезают резьбу
<u>до закрепления</u>
Приступают к расхаживанию или подъему ловимых труб

Метики эксплуатационные (МЭУ;МЭС) — для захвата и извлечения НКТ заканчивающихся муфтой*


Метики бурильные (МБУ;МСЗ) — для захвата и извлечения БТ Метики универсальные — врезаются во внутреннюю поверхность трубы и врезаются ввинчиванием в муфту Метики специальные (метчики — калибры) - врезаются ввинчиванием в резьбы муфт НКТ или БТ

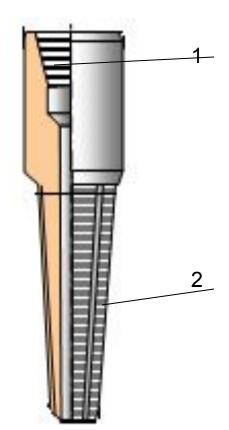
Все метчики выпускаются левые и правые.

<u>Правые</u> - для извлечения правых труб целиком и левых по частям (отворотом)

Левые - для извлечения левых труб целиком и правых по частям (отворотом)

^{*} Допускается захват высаженного конца без муфты

МБУ


<u>Метчики универсальные</u>

У всех метчиков:

-Продольные канавки, для создания режущей кромки и выхода стружки

Отличие:

- МБУ конусность ловильной резьбы <u>1:16</u>
- МЭУ конусность ловильной резьбы <u>1: 8</u>
- МБУ имеет резьбу под направление
- МЭУ направления крепятся к специальной (отдельной) головке
 - 1 резьба присоединительная
 - 2 резьба ловильная
 - 3 резьба под направление

МЭУ

<u>Метчики специальные</u>

У всех метчиков:

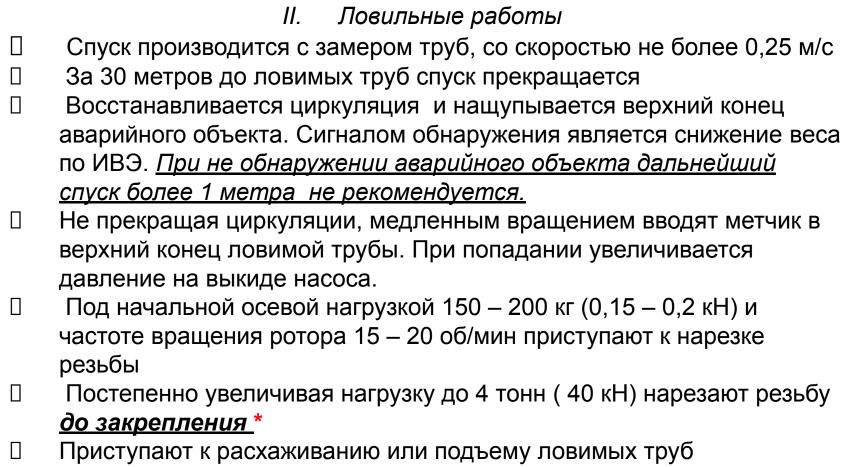
-Продольные канавки, для создания режущей кромки и выхода стружки

Отличие:

МСЗ - ловильная резьба как у замка БТ МЭС - ловильная резьба как у

муфты НКТ

MC3 M9C

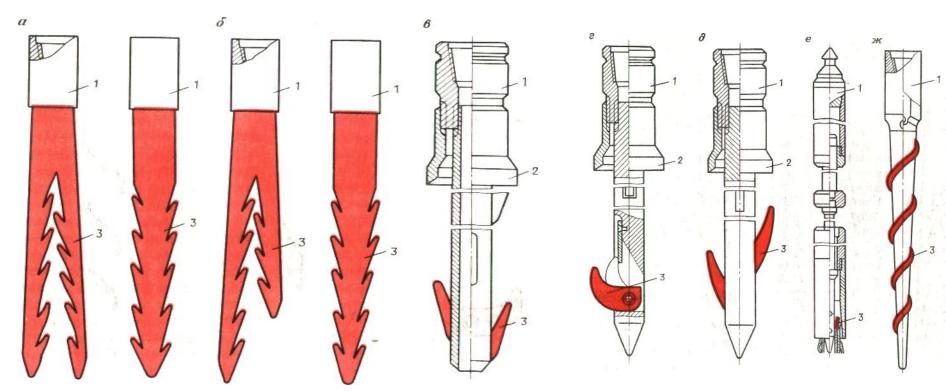

Методика ловильных работ метчиками *

I. Подготовительные работы

- □ Осмотр: дефекты,трещины,забои
- □ Осмотр: ловильная резьба
- □ Наворачивается центрирующее приспособление (если это необходимо). При этом:
- замеряют расстояние от торца воронки до торца метчика,
- замеряют величину захода (т.е расстояние от торца метчика до места крепления инструмента)
- проверяют соответствие диаметра воронки диаметру скважины

^{*} Методика ловильных работ для всех метчиков одинаков

Методика ловильных работ метчиками


^{*} Обычно признаком нарезания служит снижение нагрузки по ИВЭ

Методика ловильных работ метчиками

III. Осложнения

- □ При врезании давление резко поднимается (через башмак аварийных труб не восстанавливается циркуляция)
- Приостанавливается врезание до появления циркуляции
- При отсутствии циркуляции провести врезание без закачки жидкости, но более медленным вращением инструмента

<u>Ловители кабеля, каната, проволоки</u>

<u>Крючки:</u> a - ловитель с внутренним захватом; b - ловитель с укороченным внутренним захватом; b - удочка е внутренним каналом; b - удочка с подвижными зубьями; b - удочка многозахватная; b - ловитель кабеля b с боковой прорезью; b - ловитель штопорный

1 - корпус; 2 — воронка ограничительная; 3 — захват кабеля(крючёк)

Шнек – рисунка нет

Методика ловильных работ удочкой

I. Подготовительные работы


- □ Осмотр: дефекты,трещины
- □ Осмотр: ловильная резьба,провар крючков и ...
- □ Наличие ограничительной воронки для исключения образования пробок над крючком (диаметр которой не должен превышать диаметра шаблона обсадной колонны).

Методика ловильных работ удочкой

II. Ловильные работы
Спуск производится с замером труб, со скоростью не более 0,25 м/с
За 30 метров до ловимого объекта спуск прекращается
Контролируя вес ИВЭ производится допуск (скорость не более 0,1
м/с) с одновременным вращением колонны (15 – 20 об/мин)
Во избежании, возникновения сальника, осевая нагрузка на
инструмент не должна превышать 0,5-1 тонну. После 5-6 оборотов
производят подъем инструмента, следя за индикатором веса.
При превышении веса больше веса инструмента, а затем падении
стрелки индикатора до собственного веса (в момент обрыва кабеля)
производят подъем удочки.
При отрицательном результате, <u>если заранее известно точное</u>
<u>расположение кабеля,</u> ловильные работы можно повторить.
Если глубина верхнего залегания кабеля неизвестна, то
рекомендуется производить полный подъем после первого
залавливания.
При повторном спуске ловильные работы проводят на глубине ниже
предыдущей не более чем на 10 м, во избежании, образования
сальника и других осложнений.

- □<u>Шарнирная удочка</u> применяется в тех случаях, когда канат или кабель, спутанные в клубок, затрудняют прохождение удочки с приваренными крючками.
- □При прохождении удочки через клубок каната или кабеля крючки, откидываясь на осях и сжимая пластинчатые пружины входят внутрь прорези, почти не выступая за габариты стержня.
- □При извлечении удочки под действием силы упругости пружины вновь возвращаются в раскрытое положение и захватывают ловимый объект.

- <u>Штопор</u> служит для растаскивания в колонне запутанных клубков кабеля, каната и т. п., образовавших сальник в скважине.
- □ Штопор состоит из конусного стержня, на который спирально навивается пруток, образуя штопор, входящий в сальник при вращении бурильных труб и при подъеме расправляющий кабель.
- Штопор чередуется со спуском крючков-удочек.

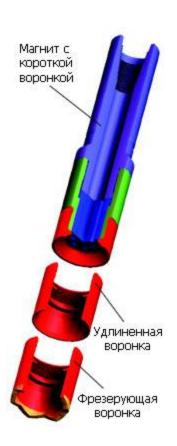
<u>Шнек служит для извлечения из скважины кусков кабеля,</u> оплетки, хомутов для крепления КРБК.

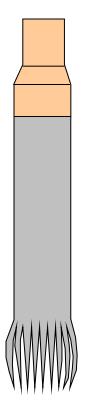
- □За несколько метров до ловимого объекта спускают шнек,
- □Вращая инструмент, осевую нагрузку доводят до 3-5тонн.
- □После 10-15 оборотов вращение прекращают и производят подъем инструмента.
- □При возрастании нагрузки вращения инструмента в процессе ловильных работ осевую нагрузку уменьшают до 1-2 тонн.

Наиболее эффективен и безопасен шнек с кожухом

Очистка забоя от посторонних предметов

- Магнитные ловители
- □ Пауки
- □ Металлошламоуловители
- □ Гидрожелонки


<u>Ловители магнитные ТПЛ</u>


ТПЛ 140 и 146 Условная грузоподъемность, кг

550-650

<u>Ловители магнитные МЛ</u>

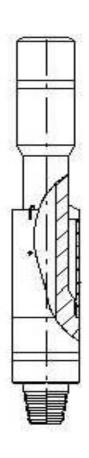
Шифр типоразмера магнитного ловителя	МЛ 140	МЛ 146
Наружный диаметр, мм	139.7	146
Условная грузоподъемная сила, кг	400	600

<u>Паук</u>

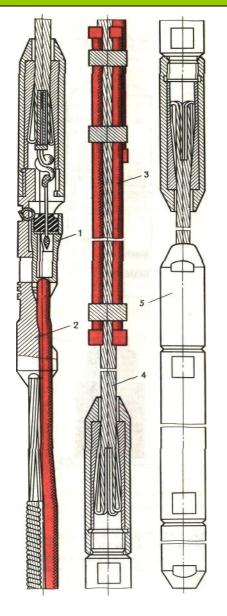
<u>Изготовление:</u>

- Пауки обычно изготавливают из обсадной трубы длиной 1,5-2,5м.,
- В нижней части которой нарезают бочкообразные зубья высотой 200-350мм.
- Перед изготовлением зубьев трубу; протачивают 350-500мм на конус до внутреннего диаметра.
 Принцип действия паука
- После спуска его в скважину восстанавливают циркуляцию промывочной жидкости и
- создают на него нагрузку 3-5тонн.
- Зубья паука сходятся и находящиеся на забое металлические предметы попадают в его внутреннюю полость.

<u>Применение паука эффективно при ловле неприхваченных мелких</u> <u>предметов, находящихся на твердом забое,</u>


<u>Паук гидравлический</u>

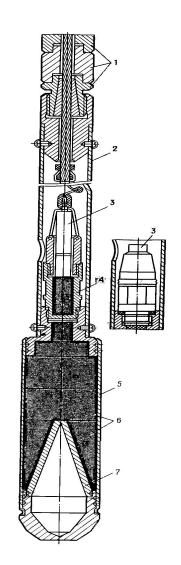
Состоит из:


- неразборного корпуса, изготовленного из высокопрочной, легированной стали,
- •верхнего переводника,
- •фрезерующей воронки
- •лепестковых механических захватов.
- ✔В верхней части корпуса установлен шаровой клапан с приёмной воронкой для перекрытия центрального промывочного канала. Перекрытие производится сбросом в ловильную колонну шара.
- ✓ Между наружной и внутренней трубчатыми частями корпуса выполнены каналы для прохода промывочной жидкости и выхода её через наклонные боковые отверстия.
- ✔Лепестковые механические захваты, установленные в нижней части корпуса в два яруса с возможностью свободного вращения, служат для удержания захваченных предметов.
- Удержание происходит за счёт шарнирно закреплённых подпружиненных лепестков, перекрывающих в транспортном положении выход из внутренней полости .
- ✓Фрезерующая воронка, выполненная в форме кольцевого фрезера, в зависимости от условий применения, может иметь различные по форме (плоская, волнистая, зубчатая, выступающая наружу или прошлифованная заподлицо с корпусом) поверхности режуще-истирающей напайки.

Металлошламоуловители

Типоразмер	Наружный диаметр, мм	Глубина корзины, мм
ШМУ-К-ММ-108		250
ШМУ-С-ММ-108		500
ШМУ-Д-ММ-108	100	750
ШМУ-К-НМ-108	108	250
ШМУ-С-НМ-108		500
ШМУ-Д-НМ-108		750
ШМУ-К-ММ-112	112	250
ШМУ-С-ММ-112		500
ШМУ-Д-ММ-112		750
ШМУ-К-НМ-112		250
ШМУ-С-НМ-112		500
ШМУ-Д-НМ-112		750
ШМУ-К-ММ-114		250
ШМУ-С-ММ-114	114	
ШМУ-Д-ММ-114		750
ШМУ-К-НМ-114		250
ШМУ-С-НМ-114		
ШМУ-Д-НМ-114		750

<u>Торпедирование</u>


ТорпедаТДШ предназначена

- □для ликвидации прихватов методом встряхивания
- □для ослабления резьбовых соединений с цельноследующего развинчивания в интервале взрыва.

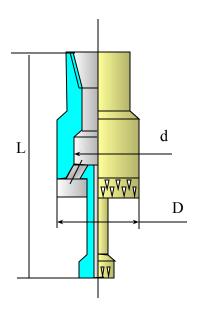
Заряд торпеды состоит из отрезков детонирующего шнура, прикрепленных к тросу.

<u>Торпеды кумулятивные осевого</u> <u>действия (ГКО)</u>

предназначена для разрушения металлических предметов и твердых пород. Кроме того, торпеды диаметром от 38 до 72 мм можно использовать для ликвидации заклиниваний долот и турбобуров.

<u>ФРЕЗЕРОВАНИЕ</u>

Фрезеры предназначены для подготовки конца аварийных труб, исправления дефектов эксплуатационной колонны, дробления металлических предметов на мелкие куски и т. д.

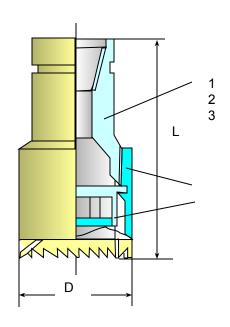

- □ Скважинные фрезеры ФП
- □ Магнитные фрезеры -ловители типа ФМ
- □ Фрезеры типа ФЗК
- Режуще-истирающие кольцевые фрезеры типа ФК
- □ Скважинные фрезеры-райберы типа ФРЛ
- □ Скважинные фрезеры типов ФЗ и ФЗС
- □ Скважинные фрезеры типа ФТК

Скважинные фрезеры типа ФП

Предназначены для фрезерования верхнего конца насосно-компрессорных, бурильных и обсадных труб с целью захватывания их ловильным инструментом.

- □ Фрезер торцовый, с опорно-центрирующим устройством, позволяющим центрировать фрезер относительно оси колонны.
- □Истирающе-режущие участки фрезера армированы композиционным твердосплавнымматериалом.
- □В корпусе имеются промывочные отверстия и стружкоотводящие противозаклинивающие каналы.
- □Для присоединения фрезера к бурильной колонне на верхнем конце корпуса предусматрена присоединительная резьба.

Нормальный режим работы фрезеров определяется осевой *нагрузкой 3-8m* при минимальном внутреннем диаметре фрезеруемых труб 40,3-144,1 мм и частоте вращения ротора *42-150 об/мин*.

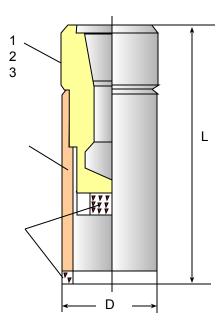

Магнитные фрезеры -ловители типа ФМ

Предназначены для фрезерования и извлечения находящихся на забое скважины мелких металлических предметов с ферромагнитными свойствами.

Нижняя часть корпуса изготовлена в виде фрезерной коронки.

- □Магнитная система представляет собой набор постоянных магнитов марки ЮН14ДК25БА, которые размещены в металлическом стакане, служащем магнитопроводом.
- □Замковая резьба на верхнем конце переводника обеспечивает присоединение фрезера ловителя к колонне бурильных труб.
- Поток промывочной жидкости направляется по периферии магнитной системы.

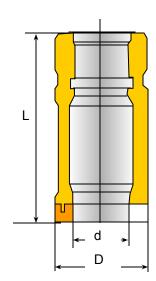
Нормальный режим работы фрезеров определяется номинальной осевой нагрузкой **0,03-0,12кH (3-13кгс)** при частоте вращения ротора **18-60 об/мин** и подаче насоса **12-20 л/сек** в зависимости от типоразмера фрезера.



Фрезеры типа ФЗК

Предназначены для кольцевого офрезерованияс последующим сплошным расфрезерованием в обсаженной скважине неприхваченных металлических предметов и верхних концов насосно-компрессорных труб.

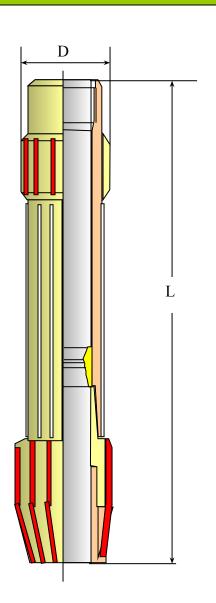
Фрезер состоит из кольцевой воронки и торцового фрезера.


- □На кольцевой воронке и торцовом фрезере имеются режущеистирающие участки, армированные композиционным твердосплавным материалом.
- □На верхнем конце торцового фрезера нарезана присоединительная резьба для соединения фрезера с колонной бурильных труб.
- □ В зоне резания торцового фрезера расположены промывочные пазы и отверстия.
 - Нормальный режим работы фрезера определяется осевой нагрузкой не более <u>40 60 кH (4-6 mc)</u>, при частоте вращения ротора <u>60-100</u> <u>об/мин</u>).

Режуще-истирающие кольцевые фрезеры типа ФК

- Предназначены для фрезерования прихваченных бурильных и насосно-компресмсорных труб (по телу), а также насосных штанг в обсаженных скважинах.
- □На наружной поверхности цилиндрического корпуса фрезера равномерно расположены противо- заклинивающие каналы.
- □ Нижний конец корпуса армирован композиционным твердосплавным материалом.
- □Фрезер соединяется с колонной бурильных труб при помощи приемной трубы, изготовленной из соответствующей бурильной трубы с таким расчетом, чтобы ее внутренний диаметр был не меньше внутреннего диаметра фрезера.
- Нормальный режим работы фрезера определяется осевой нагрузкой не более <u>10-35 кН (1-3.5 mc)</u> при частоте вращения ротора

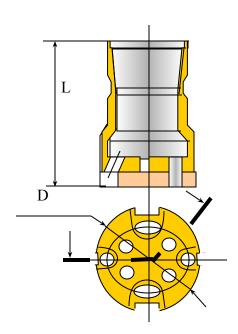
50-90 об/мин.



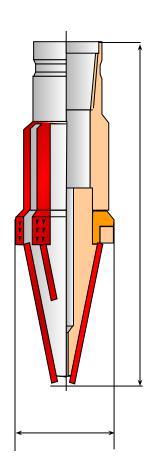
Скважинные фрезеры-райберы типа ФРЛ

Предназначены для прорезания "окна" в обсадной колонне под последующее бурение второго ствола. Фрезер-райбер состоит *из режущей* и *повильной частей*. *Режущая часть* включает в себя цилиндрический и конический райберы и кольцевой фрезер.

Ловильная часть представляет собой специальный захват, установленный внутри цилиндрического райбера.


- •В верхней части фрезера-райбера нарезана замковая резьба для присоединения к колонне бурильных труб. Промывочное отверстие центральное.
- •Окна необходимого профиля и длины в обсадной колонне прорезают за один рейс, одновременно извлекая на поверхность часть обсадной колонны ленту, образующуюся в процессе прорезания окна.

Скважинные фрезеры типов ФЗ и ФЗС


- Предназначены для фрезерования металлических предметов в обсаженных и необсаженных скважинах с целью очистки скважин по всему сечению ствола.
- □Верхний конец цилиндрического корпуса фрезера имеет резьбу для свинчивания с колонной бурильных труб,
- нижний армирован композиционным твердосплавным материалом.
- □В армированном слое предусмотрены промывочные каналы,по которым промывочно-охлаждающая жидкость поступает непосредственно в зону резания.
- □Фрезеры типа ФЗК имеют спиральную вставку в промывочных каналах.

Нормальный режим работы определяется осевой нагрузкой не более 10-100 кН (3-10 mc) при частоте вращения ротора 42-120 об/мин для фрезеров типа ФЗС. По требованию заказчика фрезеры изготавливают с правыми и левыми присоединительными резьбами.

Скважинные фрезеры типа ФТК

- Предназначены для ликвидации фрезерованием поврежденных участков (смятий, сломов) обсадных колонн в нефтяных и газовых скважинах.
- □Фрезер торцово-конический (комбинация торцовой и цилиндрической истирающе-режущих поверхностей с конической режущей).
- □Торцовая поверхность фрезера армирована композиционным твердосплавным материалом,
- □Цилиндрическая поверхность твердым сплавом "релит", а коническая поверхность оснащена режущими зубьями, представляющими собой установленные в пазах твердосплавные пластины.
- □Для присоединения фрезера к колонне бурильных труб в верхней его части предусмотрена замковая резьба.
- □Боковые промывочные отверстия расположены под углом к оси инструмента.
 - Нормальный режим работы фрезеров определяется осевой нагрузкой не более <u>40-60 кH (4-6 mc)</u>, при частоте вращения **60-120 об/мин**.

Процесс фрезерования заключается в следующем:

- Фрезер спускают в скважину
- не доходя до забоя 5-6 метров, начинают промывку с одновременным вращением бурильных труб
- Медленно доводят фрезер до забоя скважины и фрезеруют. Для обеспечения нормального режима работы осевая нагрузка в начальный период фрезерования должна быть <u>не более 0,5 тонн</u> с равномерным повышением <u>до 2.5 тонн</u> при частоте вращения ротора <u>60-80 об/мин</u> и подаче промывочного насоса <u>не менее 12м/с</u>.

При фрезеровании аварийных труб металлические стружки и обломки попадают в зазор между инструментом и стенкой скважины и могут вызвать прихват инструмента.

- Во избежание прихвата и заклинивания инструмента, через каждые 30-50см необходимо производить расхаживание до выбора веса всего инструмента.
- При фрезеровании в скважине аварийных объектов изготовленных из высокопрочных сталей торцевыми фрезерами, следует применять более повышенный режим фрезерования: осевая нагрузка <u>6-7тонн</u>, частота вращения ротора <u>140-180 об/мин.</u>
- При окончании фрезерования, промыв скважину полным объемом, поднимают инструмент на поверхность.

Неправильное ведение работ по фрезерованию может вызвать новые аварии, поломку и оставление части или целогофрезера, бурильных труб, их искривление под фрезером и т.п.

Извлечение из скважины прихваченных НКТ

- Отворотом
- Докрепляются резьбы
- ✓ Определяется место прихвата
- ✓ Создают нагрузку равную собственному весу НКТ до места прихвата.
- С помощью ротора вращают бурильные трубы против часовой стрелки на 10-20 оборотов, после чего расхаживают колонну, создавая максимально допустимую нагрузку.
- ✓ Если обрыва ловильных труб не происходит, то опять чередуют вращение труб с расхаживанием, пытаясь оборвать частично развинченные соединения.

При создании нагрузки более собственного веса НКТ <u>до места прихвата</u>, возникает опасность не полного развинчивания в нескольких местах. При подъеме возможен полет.

Извлечение из скважины прихваченных цементом НКТ

- □ отворачивают и извлекают свободные от цемента трубы,
- □ спускают трубный или кольцевой фрез, офрезеровывая зацементированные трубы.
- Длина фрезера с направлением должна быть не менее 10 м.
- Офрезеровывание отворот труб производят с таким расчетом, чтобы конец, остающейся в скважине трубы был офрезерован.
- Фрезерование труб должно осуществляться при интенсивной промывке скважины и осевой нагрузке на фрезер не более 1-2 тонны.