Лекция 1.

Физиологическая классификация и характеристика физических упражнений.

Вопросы

- 1. Физиология спорта как предмет.
- 2. Основные критерии классификации физических упражнений.
- 3. Современная физиологическая классификация физических упражнений в спорте (по Фарфелю В.С.).
- 4. Физиологическая характеристика спортивных поз и статической нагрузки.
- 5. Физиологическая характеристика циклических, ациклических и ситуационных физических упражнений.
- 6. Физиологические особенности спортивной деятельности при плавании. Оздоровительный эффект плавания.

СПИСОК РЕКОМЕНДУЕМОЙ

- .Солодков А.С., **Офрутур Б.Б.Туурцо**погия <u>человека:</u> общая, спортивная, возрастная: учеб. для высш. учеб. заведений физической культуры М.: Терра-Спорт, 2001.
- .<u>Спортивная физиология</u>: учеб. для ин-тов физической культуры/ <u>Под ред. Я.М. Коца</u>. М.: Физкультура и спорт, 1986.
- .<u>Уилмор Дж. Х., Костилл Д.Л., Физиология спорта и двигательной активности</u>. К.: Олимпийская литература, 1997.
- .Смирнов В.М., Дубровский В.И. Физиология физического воспитания и спорта. М.: Владос-Пресс, 2002.

 .Физиология человека: общая, возрастная,

Вопрос 1

Физиология спорта как предмет.

Физиология спорта — это специальный раздел физиологии человека, изучающий изменения функций организма и их механизмы под влиянием мышечной (спортивной) деятельности и обосновывающий практические мероприятия по повышению ее эффективности.

Основная цель дисциплины - изучение функционального состояния организма человека при физических нагрузках.

<u>Основная задача</u> - обоснование, разработка и реализация мероприятий, обеспечивающих высокие достижения спортивных результатов и сохранения здоровья спортсменов.

Связь физиологии спорта с другими науками

спортивная медицина теория и методика

культуры

физ.

лечебная физкультура

педагогика

спорт.-пед. дисциплины Физиологи я спорта

биология

анатомия

физиологи я

физика

RNMNX

психология

гигиена

биохимия

биомеханик а

- •частоту и глубину дыхания;
- **■**внутреннюю температуру и температуру кожи;
- •мышечную деятельность (электромиограмма)*;*
- **-**деятельность ЦНС, ССС;
- **•нейрогуморальное состояние организма и т.д.**

велоэргометры

для нагрузочного тестирования в кардиологии, спортивной и восстановительной медицине.

тредбан

Лежачие эргометры для нагрузочного тестирования и эхокардиографии

Специальные эргометры

Система анализа и тренировки

Гребной тренажер – показывает время тренировки, количество гребков, пульс, суммарную дистанцию, расход калорий, ограничение пульса

Носимый неинвазивный монитор физиологических параметров организма с отдельным носимым дисплеем для представления данных для оценки физической активности, метаболизма и эффективности сна.

Клинические методы обследования в спортивной медицине

- •Расспрос:
- •Анамнез
- •жизни
- •Спортивный
- •анамнез
- •Общий
- •осмотр
- •Перкуссия
- •Пальпация
- •Аускультация
- •Анамнез
- •болезни

Параклини термеметриметоды обследования

- •Инструментально-В Сфункциональные МЕДИЦИНЕ
 - •методы:
 - ΘΚΓ; ΦΚΓ; ΠΚΓ;
 - •спирография;
 - •пневмотахометрия;
 - 99 F; P9 F; 9 HM F
 - •Тепловидение
 - •(термография)
 - •Эндоскопические
 - •Лабораторные
 - •Радиоизотопная
 - •диагностика
 - •Ультразвуковые
 - •методы:
 - •УЗИ сердца, УЗИ мозга;
 - •УЗИ внутренних органов;
 - •ультразвуковая допплерография;
 - •допплеровское картирование
 - •Лучевые методы:
 - •рентгеновские, томография;

Вопрос 2

Основные критерии классификации физических упражнений.

Классификация физических упражнений по основным характеристикам активности мышц

по объему активной **МЫШЕЧНОЙ** локальны региональн ые глобальн ые

по типу
мышечных
сокрашений
статическ
ие

динамическ
ие

по силе или мощности сокращени силовые скоростносиловые (мощностные)

ВЫНОСЛИВОСТЬ

на

Основные критерии классификации физических упражнений

энергетическ

ие

биомеханическ

ие

ведущего физического качества

предельного времени работы

I. По основным источникам энергии

анаэробн

1. максимальной анаэробной мощности (анаэробной мощности);

околомаксимальной анаэробной мощности (смешанной анаэробной мощности);

3. субмаксимальной

анаэробной мошности

аэробн

1. максимальной аэробной мощности (95-100% МПК);

2. околомаксимальной аэробной мощности (85-90% МПК);

3. субмаксимальной аэробной мощности (70-80% МПК);

4. средней аэробной мощности (55- 65% от

Упражнения по преобладающему источнику энергии

анаэробные алактатные (осуществляем ые за счет энергии фосфагенной системы - АТФ и КрФ)

анаэробны e лактатные (за счет энергии гликолиза распада углеводов с образование м молочной кислоты)

аэробные (за счет энергии окисления углеводов и жиров).

Соотношение анаэробных и аэробных источников энергии при различной длительности физических упражнений

Путь	Продолжительность работы							
энерго- продукц ии	10c	1 мин	2 мин	4 мин	10 мин	30 мин	1 час	2 часа
Анаэроб	85	70	50	30	10	5	2	1
ный								
Аэробны	15	30	50	70	90	95	98	99
й								

классификация физических упражнений по уровню энерготрат (ккал/мин)

Пол и возраст	Упражнения							
	легкие	умеренные (средние)	тяжелые	очень тяжелые				
Мужчины:								
20-29	4,2	4,3-8,3	8,4-12,5	> 12,5				
30-39	3,9	4,0-7,8	7,9-11,7	> 11,7				
40-49	3,7	3,8-7,1	7,2-10,7	>10,7				
50-59	3,2	3,3-6,3	6,4-9,5	> 9,5				
60-69	2,5	2,6-5,0	5,1-7,5	> 7,5				
Женщины:								
20-29	3,2	3,3-5,1	5.2-7,0	> 7,0				
30-39	2,9	3,0-4,2	4,3-6,5	> 6,5				
40-49	2,7	2,8-4.0	4,1-6,0	> 6,0				
50-59	2,2	2,3-3,8	3,9- 5,5	> 5,5				
60-69	1,9	2,0-3,5	3,6-5,0	> 5,0				

Показатели энергетической стоимости упражнений

Энергетическая мощность - это количество энергии, расходуемое в среднем за единицу времени при выполнении упражнения (Вт, ккал/мин, кДж/мин, скорость потребления О₂ (мл О₂/мин) или в МЕТ,ах

МЕТ - метаболический эквивалент, т. е. количество О2, потребляемого в 1 мин - на 1 кг веса тела в условиях полного покоя лежа. 1 МЕТ вакен 3.5 мл Ог/кз/мин валовый (общий) энергетический расход - это количество энергии, расходуемой во время выполнения всего упражнения в целом.

II. По биомеханическим критериям:

циклическ ие

> ациклическ ие

> > смешанн ые

III. По ведущему физическому качеству

силовы

e

скоростн

ые

скоростно-

силовые

на

выносливость

координационные или сложно-

технические

IV. По предельному времени работы

Зоны относительной

- зона мак**оломальною мощности** с предельной продолжительностью упражнений до 20 с,
- •<u>зона субмаксимальной относительной мощности</u> *om 20 с до 3-5 мин,*
- •<u>зона большой относительной мощности</u> от 3-5 до 30-40 мин,
- <u>зона умеренной относительной мощности</u> более

Вопрос 3


Современная физиологическая классификация физических упражнений в спорте (по Фарфелю В. С.).

Схема физиологической классификации упражнений в спорте (по В. С. Фарфелю)

Поз

- Лежание
- Сидение
- Стояние
- С опорой на руки (висы, стойки, упоры)

Движения

Вопрос 4

Физиологическая характеристика спортивных поз и статической нагрузки.

Поза - это закрепление частей скелета в определенном положении.

- Лежание
- Сидение
- Стояние
- С опорой на руки (висы, стойки, упоры)

При сохранении позы скелетные мышцы осуществляют две формы механической реакции:

- тонического напряжения (пока возможно достаточно стабильное сохранение позы),
- фазных (тетанических) сокращений (для коррекции позы при ее заметных отклонениях от заданного положения и при больших усилиях).

Классификация поз:

- произвольные управление осуществляется корой больших полушарий,
- непроизвольные в них участвуют условные и безусловные рефлексы при помощи центров продолговатого и среднего мозга,
- <u>рабочие</u> обеспечивают текущую деятельность,
- предрабочие необходимы для подготовки предстоящего действия,
- удобные работостособность человека по вышается,
- неудобные эффективность работы

Физиологическая характеристика мышц

В ЦНС - в моторной области коры создается мощный очаг возбуждения - рабочая доминанта, которая оказывает тормозящее влияние на центры дыхания и сердечной деятельности.

В двигательном аппарате наблюдается непрерывная активность мышц, что делает ее более утомительной, чем динамическая работа с той же нагрузкой.

В кардиореспираторной системе - уменьшаются жизненная емкость легких (ЖЕЛ), глубина и минутный объ ем дыхания, падает ЧСС и потребление кислорода.

После окончания работы наблюдается резкое повышение этих показателей (феномен Линдгарта-Верещагина).

При значительных усилиях наблюдается явление

Вопрос 5.

Физиологическиая характеристика циклических, ациклических и ситуационных физических упражнений.

Физиологическая характеристика циклических упражнений

При работе максимальной мощности:

- длительность до 20-30 сек.;
- нагрузка анаэробная алактатная; - опишин не оперетрати продоли не очимари не
- единичные энерготраты предельные, суммарные минимальны;
- кислородный запрос огромный, удовлетворяется незначительно, кислородный долг не большой;
- заметных сдвигов в системах дыхания и кровообращения нет. Но ЧСС до 200 уд∙мин⁻¹ из-за высокого уровня предстартового возбуждения;
- в крови повышенное содержание глюкозы (гипергликемия);

Ведущие системы организма, обеспечивающие работу -

ПНС и пригательный аппарат

При работе субмаксимальной мощности:

- длительность от 20-30 с до 3-5- мин;
- нагрузки анаэробно-аэробные;
- единичные энерготраты снижаются (от 1.5 до 0.6 ккал•с⁻¹), суммарные возрастают (от 150 до 450 ккал);
- концентрации лактата в крови предельная (до 20-25 мМоль•л⁻¹),
- рН крови снижается до 7.0 и менее;
- максимальное усиление функций дыхания и кровообращения, достигается МПК;
- ЧСС 180 уд мин.;
- кислородный долг высокий;
- ведущие системы организма кислородтранспортные системы кровь, кровообращение и дыхание; центральная нервная система.

При работе большой мощности

- длительность от 5-6 мин до 20-30 мин.;
- нагрузка аэробно-анаэробная;
- единичные энерготраты невысоки (0.5-0.4 ккал с⁻¹), но суммарные - 750-900 ккал;
- максимальное усиление функций кардиореспираторной системы, обеспечивает достижение МПК;
- кислородный долг в конце дистанции высокий (12-15 л);
- высокая концентрация лактата в крови (около 10 мМоль от л-1);
- на протяжении дистанции наблюдается стабилизация показателей потребления кислорода, дыхания и кровообращения;
- ЧСС сохраняется достаточно постоянно на оптимальном рабочем уровне 180 уд мин⁻¹;
- ведущие системы организма кардиореспираторная,
 терморегуляции и желез внутренней секреции.

При работе умеренной мощности

- -длительность от 30-40 мин до нескольких часов,
- -нагрузка аэробная.
- -по мере расходования глюкозы происходит переход на окисление жиров,
- -единичные энерготраты незначительны (до 0.3 ккал с⁻¹), суммарные огромны (до 2-3 тыс. ккал и более),
- -кислородный долг к концу дистанции менее 4 л,
- -концентрация лактата не превышает нормы (около 4 мМоль л⁻¹),
- -сдвиги показателей дыхания и кровообращения ниже максимальных,
- -ЧСС 160-180 уд мин⁻¹,
- -гипогликемия;
- ведущее значение имеют большие запасы углеводов и функциональная устойчивость ЦНС к монотонии, противостоящая развитию запредельного торможения.

- сочетание динамической и статической работы;
- характер нагрузки анаэробный (прыжки, метания) или анаэробно-аэробный (вольные упражнения в гимнастике, произвольная программа в фигурном катании и др.);
- по длительности выполнения соответствуют зонам максимальной и субмаксимальной мощности;
- суммарные энерготраты невысокие из-за краткости выполнения;
- кислородный запрос на работу и кислородный долг (~ 2 л) –малы;
- значительные требования к вегетативным системам организма не предъявляются.

Ведущие системы - ЦНС, сенсорные системы, двига

<u>Физиологическая характеристика ситуационных</u>

<u>упражнений</u>:

- -переменная мощность работы (от максимальной до умеренной или полной остановки спортсмена), сопряженная с постоянными изменениями структуры двигательных действий и направлениями движений,
- -изменчивость ситуации на фоне дефицита времени,
- -ациклическая или смешанная (*циклическая и ациклическая*) структура движений,
- -динамическая скоростно-силовая работа,
- -высокая эмоциональность,
- -энерготраты сравнительно низкие,
- -ЧСС, постоянно колеблется в диапазоне от 130 до 180-190 уд мин⁻¹;
- частота дыхания от 40 до 60 вдохов в 1 мин,
- -вес тела спортсмена после соревновательных нагрузок, снижается на 1-3 кг,

Ведущие системы ЦНС, сенсорные системы, двига

тельный аппарат

Вопрос 6

Физиологические особенности спортивной деятельности при плавании. Оздоровительный эффект плавания.