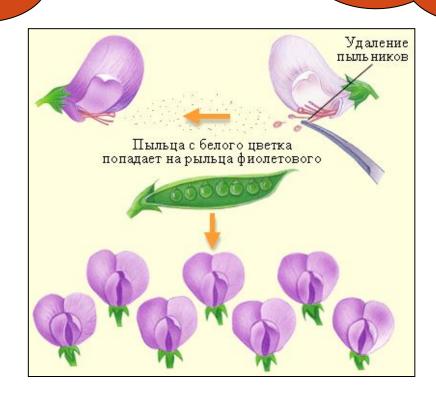

Методы изучения генетики человека

Цели урока


- изучить сущность и значение основных методов антропогенетики: генеалогического, близнецового, цитогенетического
- рассмотреть методы пренатальной и постнатальной диагностики наследственных болезней человека
- научиться анализировать родословные, решать задачи с использованием формулы Хольцингера

Актуализация знаний

Какой метод используют для изучения генетики растений и животных?

Подумайте, можно ли использовать гибридологический метод для изучения генетики человека?

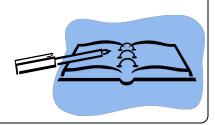
классический гибридологический метод генетики к человеку неприменим

сложный кариотип

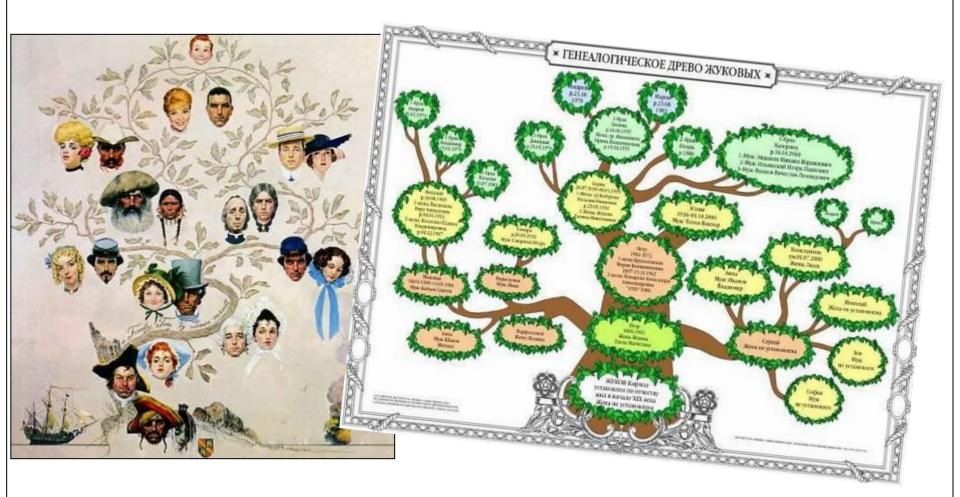
невозможность экспериментирования

позднее половое созревание

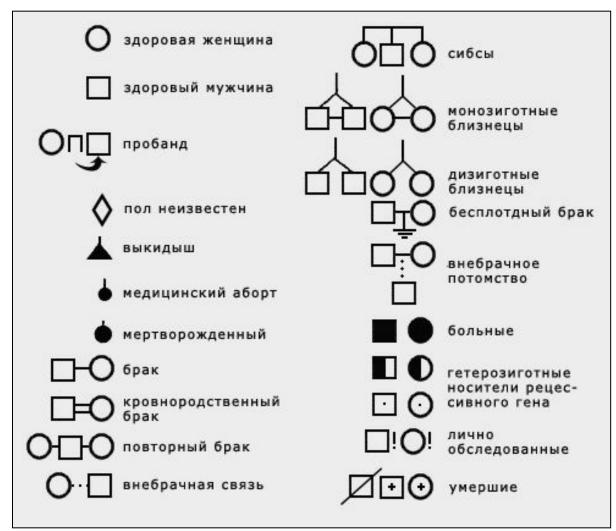
невозможность создания одинаковых условий жизни


малое

количество


потомков

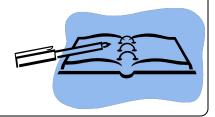
методы антропогенетики



Генеалогический метод

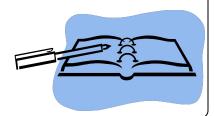
Примеры родословных

Символы, используемые при составлении родословных

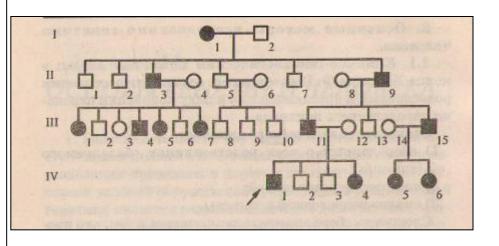


<u>Аутосомно-доминантный</u> тип

- признак в каждом поколении
- у детей и родителей одинаковый признак
- признак в равной степени проявляется у мужчин и женщин
- наследование по вертикали и горизонтали
- вероятность наследования 100%, 75%, 50%
- полидактилия, веснушки, курчавые волосы, карие глаза

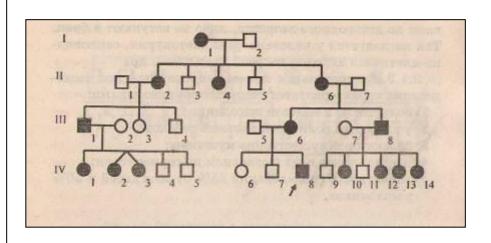

Аутосомно-рецессивный тип

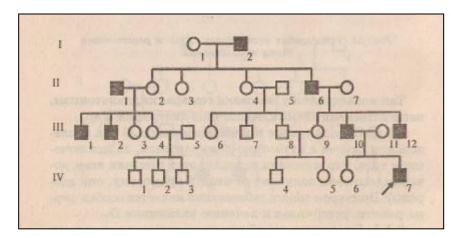
- признак не в каждом поколении
- у родителей признак отсутствует, а у детей проявляется
- признак в равной степени проявляется у мужчин и у женщин
- наследование по горизонтали
- вероятность наследования 25%, 50%, 100%
- фенилкетонурия, серповидноклеточная анемия, голубые глаза, леворукость



- Доминантный
- мужчина передает заболевание всем дочерям
- рахит, устойчивый к витамину Д
- Рецессивный
- болеют преимущественно мужчины
- вероятность наследования 25% от всех детей и 50% у мужчин
- гемофилия, дальтонизм, наследственная анемия, мышечная дистрофия

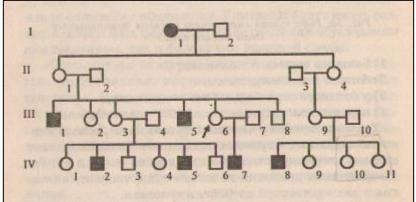
- Голандрический
- больные во всех поколениях
- болеют только мужчины
- у больного отца болеют все его сыновья
- вероятность наследования 100% у мужчин
- ихтиоз кожи, перепонки между пальцами, обволошение ушей




Типы родословных

<u>аутосомно-доминантного</u> <u>типа</u> <u>аутосомно-рецессивного</u> <u>типа</u>

Типы родословных

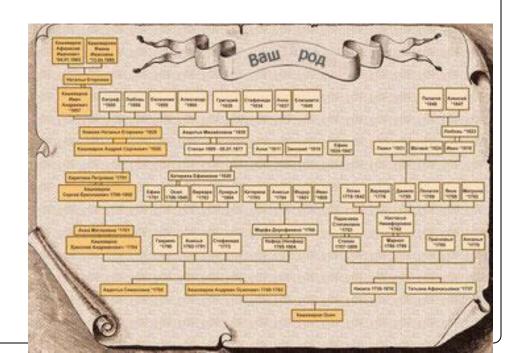


сцепленного с полом доминантного

<u>типа</u>

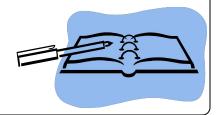
<u>голандрического</u>

<u>типа</u>


<u>сцепленного с полом рецессивного</u> <u>типа</u>

Вопросы для обсуждения

- Как составить родословную?
- Кто готов проанализировать свою родословную?
- Почему при аутосомно-рецессивном типе наследования признак появляется в IV поколении?


• Почему при голандрическом типе наследования болеют

только мужчины?

Генеалогический метод позволяет установить

- является ли признак наследственным
- тип и характер наследования
- зиготность лиц родословной
- пенетрантность гена
- вероятность наследственной патологии

Близнецовый метод

Монозиготные близнецы (однояйцевые)

Дизиготные близнецы (двуяйцевые)

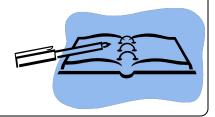
Степень различия (дискордантность) по ряду нейтральных признаков у близнецов

Признаки контролируем ю	Частота (вероятность) появления различий, %		Наследуемост
Признаки, контролируемые небольшим числом генов	однояйцев ые	разнояйцев ые	ь, %
Цвет глаз	0,5	72	99
Форма ушей	2,0	80	98
Цвет волос	3,0	77	96
Папиллярные линии	8,0	60	87
среднее	< 1 %	≈ 55 %	95 %
Биохимические признаки	0,0	от 0 до 100	100 %
Цвет кожи	0,0	55	
Форма волос	0,0	21	
Форма бровей	0,0	49	
Форма носа	0,0	66	
Форма губ	0,0	35	

Степень сходства (конкордантность) по ряду заболеваний у близнецов

Признаки, контролируемые большим числом генов и зависящие от негенетических факторов	Частота (вероятность) появления сходства, %		Наследуемость,
	однояйцевые	разнояйцевые	%
Умственная отсталость	97	37	95
Шизофрения	69	10	66
Сахарный диабет	65	18	57
Эпилепсия	67	30	53
среднее	≈ 70 %	≈ 20 %	≈ 65 %
Преступность (?)	68	28	56 %

Формула Хольцингера


H = (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ), где:

Н- коэффицент наследственности

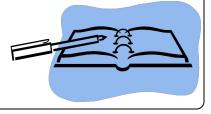
ОБ – однояйцевые близнецы

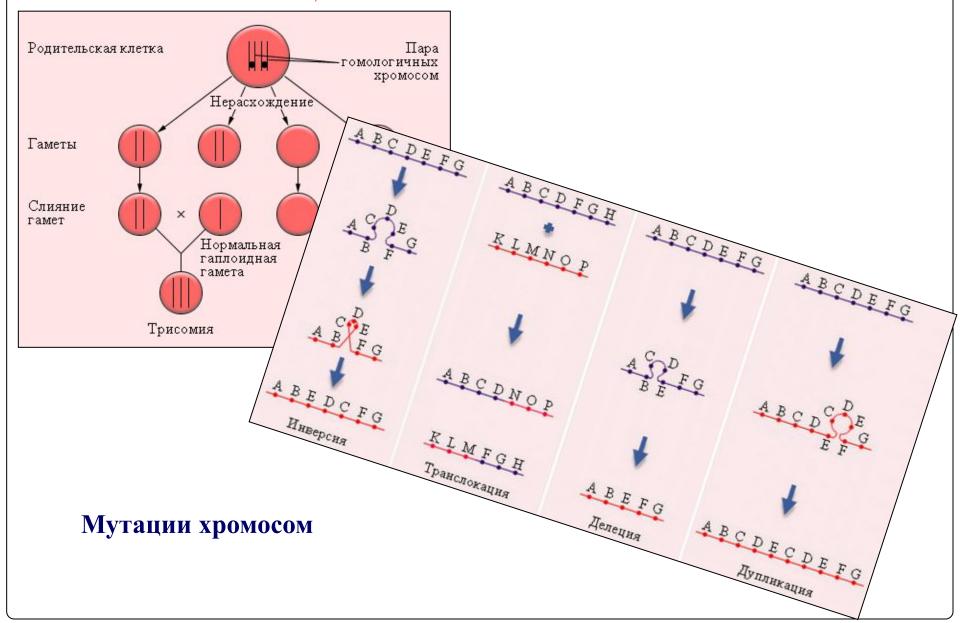
ДБ – двуяйцевые близнецы

- При H = 1 признак полностью определяется наследственным компонентом
- При **H** = **0** признак определяется влиянием среды
- При Н = близкий к 0,5 признак определяется примерно одинаковым влиянием наследственности и среды

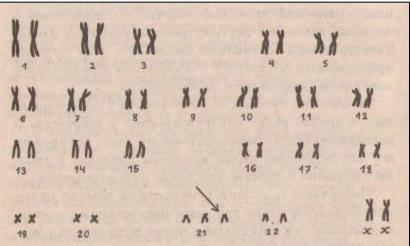
- Высокая конкордантность в парах монозиготных близнецов и существенно более низкая конкордантность в парах дизиготных близнецов свидетельствуют о решающем значении наследственности в формировании признака.
- Сходство показателя конкордантности у моно- и дизиготных близнецов означает, что роль наследственности в формировании признака незначительна.
- Низкие показатели конкордантности в обеих группах близнецов говорят о преобладающем значении окружающей среды в формировании данного признака.

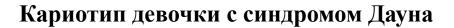
Вопросы для обсуждения

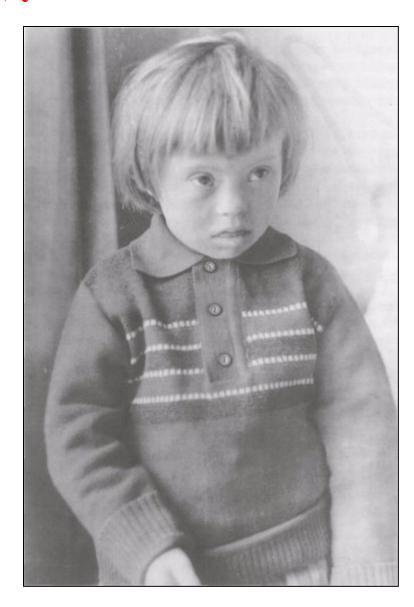

- Одинаков ли состав белков у двух монозиготных близнецов, если в их клетках не было мутаций?
- Почему у детей иногда появляются признаки несвойственные родителям?
- Почему монозиготные близнецы всегда одного пола, а дизиготные могут быть разного пола?
- Одинакова ли вероятность рождения близнецов у представителей разных рас?


Близнецовый метод позволяет установить

- влияние среды на реализацию генотипа
- вклад среды и генотипа в развитие данного признака

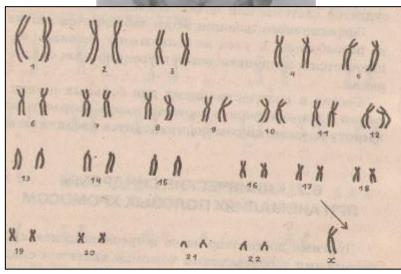



Цитогенетический метод



Синдром Дауна

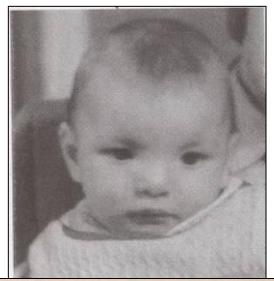


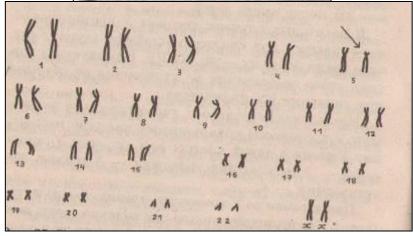


Синдром Шеришевского -Тернера

Кариотип девочки с синдромом Тернера

Синдром Клайнфельтера

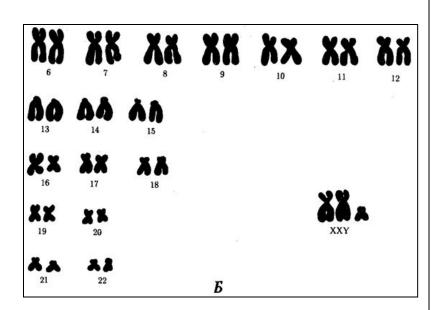


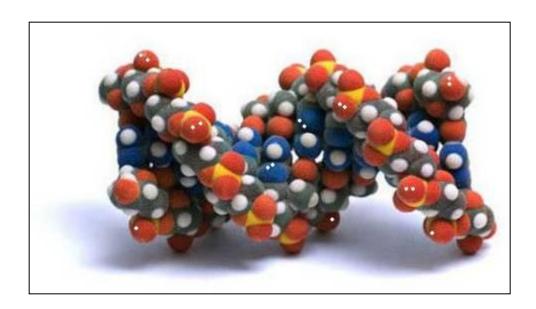


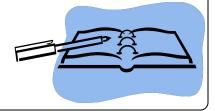
Кариотип мальчика с синдромом Клайнфельтера

Синдром «кошачьего крика»

Кариотип девочки с синдромом «кошачьего крика»


Заячья губа»

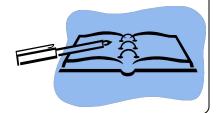

Вопросы для обсуждения


- Какие биологические материалы можно использовать для получения препаратов хромосом?
- Как изучают хромосомы лимфоцитов, если они не делятся митозом?
- Что такое мутации?
- Какие мутации ведут к возникновению наследственной патологии?
- Какое заболевание у ребенка с представленным кариотипом? Каков его пол?

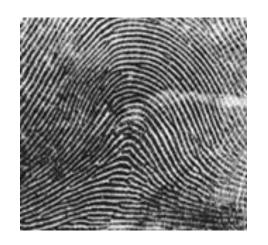
Цитогенетический метод позволяет установить

- нарушение количества хромосом
- изменение структуры хромосом
- в каком поколении появилась мутация
- причину наследственной патологии

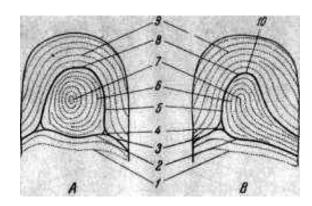
Экспресс – методы и методы пренатальной



диагностики



- в семье наследственные заболевания
- возраст матери старше 35 лет, отца 40
- гетерозиготность матери по Х-сцепленному рецессивному заболеванию
- беременность женщин с тяжелой предыдущей беременностью
- структурные перестройки хромосом у одного из родителей
- синдром ломкой Х- хромосомы
- беременные в зоне неблагоприятных условий среды

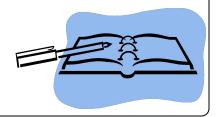

Дерматоглифический метод

Простая дуга

Петли

Топография пальцевых узоров

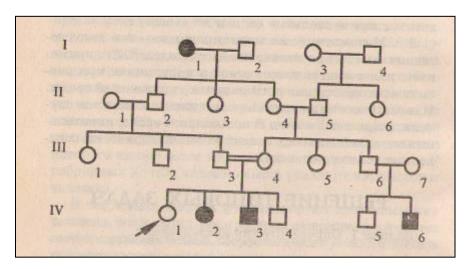
Вопросы для обсуждения

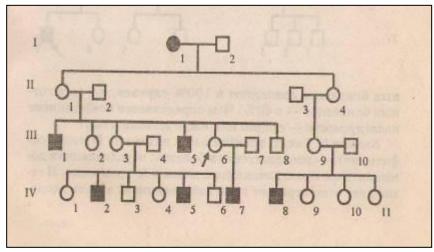

- Какие методы пренатальной диагностики наследственных заболеваний показаны всем беременным женщинам?
- Почему степень риска рождения детей с отклонениями от нормы значительно больше у алкоголиков, чем у непьющих родителей?
- Где расположено тельце Барра и как оно выглядит?
- Каковы показания для пренатальной диагностики?

Экспресс-методы позволяют

Методы пренатальной диагностики позволяют

- выявить биохимические нарушения у новорожденных
- определить зиготность близнецов
- идентифицировать личность
- определить отцовство


- предотвратить рождение ребенка с тяжелыми наследственными заболеваниями
- снизить частоту наследственной патологии новорожденных



Вопросы

- Каковы особенности человека как объекта генетических исследований?
- Какие методы применяются для изучения генетики человека?
- В чем суть и каковы возможности генеалогического метода?
- Чем прямые цитогенетические методы отличаются от непрямых?
- Почему внимательное наблюдение за проявлением признаков в ряду поколений может помочь изучить закономерности наследственности и изменчивости?
- Какое значение имеют генетические методы исследования наследственности человека для медицины и здравоохранения?
- Какие важнейшие проблемы решает в настоящее время медицинская генетика?

Определите тип наследования

Аутосомно-рецессивный тип наследования

Сцепленный с полом рецессивный тип наследования

Конкордантность монозиготных близнецов по массе тела составляет 80%, а дизиготных — 30%. Каково соотношение наследственных и средовых факторов в формировании признака?

Решение:

По формуле Хольцингера рассчитаем коэффициент наследуемости:

$$H = (\% \text{ сходства OБ} - \% \text{ сходства ДБ}) / (100 - \% \text{ сходства ДБ}),$$

$$H = (80\% - 30\%) / (100\% - 30\%) = 0.71$$

Так как коэффициент наследуемости равен 0,71, то в формировании признака большую роль играет генотип.

Домашнее задание

- Конспект
- Задачи: Конкордантность монозиготных близнецов по росту составляет 65%, а дизиготных – 34%. Каково соотношение наследственных и средовых факторов в формировании признака? 2. Женщина имеет светлые волосы, ее ребенок также со светлыми волосами. Мать женщины светловолосая, две сестры и два брата – темноволосые. В семье брата – ребенок темноволосый. Составьте родословную. Определите, где возможно, гетерозиготность организмов. Каков тип наследования признака?

Использованы материалы сайтов

- http//www.cerebrum.ru/metod.php
- http://www.remezov.ru/bloq/index.php/2009/04/25/rodoslovmye-qenealoqic heskia-dreva/
- http://www.open.by/health/30615
- http//www.old.xvatit.com/idealniclessons/4363-obshaja-bioloqija-orqaniche skajakhimija.html
- http//www.surq.ru/qalery/facial reconstruction/zayachya quba do operacii/
- http://www.missfit.ru/berem/uzi-priberemennosty/?print=Y
- http://www.technomaq.edu.ru/doc/66206.html
- http//www.arhivpoisk.narod.ru/innq/drevo.htm
- http://tana.ucoz.ru
- http://narod.ru
- http://www.biology.ru
- http//www.edio.ru/
- http//www.imaqes.yandex.ru