

Research on ceramics Department of Metallurgy and Materials Engineering

The MTM triangle

Ceramics research group

ZAP (Professors):

Prof. Omer Van der Biest Prof. Jef Vleugels

ATP (Technical support):

Joop Vandeursen Wout Veulemans Olivier Van Roey Mohammed Abid

Postdoctoral Researchers:

- Dr. Bernd Baufeld
- Dr. Shuigen Huang
- Dr. Kim Vanmeensel
- Dr. Songlin Ran
- Dr. Bram Neirinck

Visiting scientists:

PhD students:

Tina Mattheys Swarnakar Akhilesh Kumar Li Zhang Khuram Shahzad

PhD students:

Annabel Braem Olivier Malek Ezhil Jothinathan

Activities ceramics research group

Processing of ceramics

- Powder synthesis (sol-gel, carbo- and borothermal reduction)
- Powder metallurgical shaping

Colloïdal shaping by electrophoretic deposition (EPD)
 Microstructural analysis and functional properties
 Sintering (pressureless, hot pressing, microwave, SPS)

- Microstructural analysis (SEM, EPMA, XRD, TEM)
- Mechanical properties (hardness, toughness, strength, etc.)

• Elastic and damping properties at room and elevated temperature Modelling

- Chemical compatibility
- Electrophoretic deposition (EPD)
- Functionally graded materials (FGM)
- Damping

• Field assisted sintering technology (FAST_SPS_PECS)

Ceramic Materials under investigation

Research Topics

- Processing and characterisation of functionally graded materials (FGM)
- Colloidal processing by means of electrophoretic deposition (DC & AC-EPD)
- Development and characterisation of ceramic, CMC's and cermets
- Modelling and application of field assisted sintering (FAST, SPS, PECS)
- Investigation of elastic and damping properties of materials
- Cutting tool development and chemical compatibility assessment
- Nanomaterials and nanocomposites (biomaterials, photovoltaics, batteries)
- Processing of Porous materials (ceramics, glass & metals)
- Mechanical alloying
 Dept. Metallurgy and Materials Engineering, K.U.Leuven

Cutting tool development and chemical compatibility studies

DEVELOPMENT OF NEW CUTTING MATERIALS, TOOLS, MACHINE CONCEPTS AND TECHNOLOGIES FOR DRY HIGH SPEED CUTTING

- New composites
- Chemical wear assessment
- Gradient materials

Cutting tool development

Dry machining of cast iron with siliconnitride tools

Dry machining of cast iron with ceramic composite tools

Dry drilling of cast iron at 450 m/min

Chemical compatibility assessment

Chemical compatibility assessment

Interaction couples

Equilibrium solubility calculations

Functionally graded materials (FGM)

To combine irreconcilable properties in the same component by engineering a gradient in composition and concomitant properties

Electrophoretic deposition (EPD)

Colloidal processing technique in an electric field

- Particles are charged by interaction with the solvent and additives
- Charged particles move under the influence of an applied electric field (electrophoresis)
- Partices form a growing deposit on the deposition electrode (deposition)

Electrophoretic deposition (EPD) of FGM

Applications:

- Gradient materials
- Laminates
- Coatings (nm-mm)
- Infiltration
- Textured materials
- Save processing of nanopowders

Graded Tribological Materials Formed by Electrophoresis

EPD of FGM and coatings

Cutting tool inserts : WC-Co-Ti(C,N)/ WC-Co/ WC-Co-Ti(C,N)

EPD of FGM and coatings

EPD of FGM

Increasing the Performance of Total Hip Replacement Prostheses through Functionally Graded Material Innovation and Design

Gradient in composition resulting in:

- Gradient in properties
- Residual thermal stresses
- improved strength and wear resistance

EPD of plate shaped FGM

Symmetrical Al₂O₃/Al₂O₃-ZrO₂/Al₂O₃ FGM

EPD of complex shaped FGM

Near-net-shape processing (max + 100 μm)

EPD of complex shaped FGM

EPD of coatings

ZrO₂ coating on metal substrates

Texturing of materials

Fundamentals of AC electrophoretic deposition (AC-EPD)

Aqueous electrophoretic deposition in asymmetric AC electric fields

Alumina powder deposit formed by unbalanced AC (a) and DC (b) electric fields from a water-based suspension

How does this work ?

Basic science on EPD

Electrophoretic forming of functionally graded materials and coatings

---- Region of surface forces

- Suspension stability studies
- Charging mechanisms and particleadditive interactions
- Electrophoretic mobility and zeta potential measurements
- Study of the deposition process
- AFM of particle-electrode interaction
- Electrochemical reactions
- Fluid dynamic interactions during EPD
- Modelling of the EPD kinetics

GOA-TBA 2005-2008 K.U.Leuven

Modelling of EPD

The currents and voltages during EPD are calculated from the equivalent electric circuit shown To calculate the composition gradient in the FGM material from the starting composition of the suspensions, the EPD operating parameters and the powder-specific EPD characteristics.

Nanomaterials and Nanocomposites

?

Conventional composite

Nanocomposite < 100 nm !

Colloidal processing of nanopowders

Shaping of Coatings Composites Gradient materials

Densification with limited grain growth Characterisation: microstructural physical mechanical

Processing flowchart

60A 2008-2011 K.U.Leuven

Development of biocompatible coatings

Multifunctional bioresorbable biocompatible coatings with biofilm inhibition and optimal implant fixation

6th Framework Project <u>Meddelcoat</u> 2006-2010 Project Coordinator: K.U.Leuven

www.meddelcoat.eu

Development of Porous Materials

Development of porous glass, ceramic and metal structures and coatings

Development of textured materials by EPD

Processing of materials using a strong magnetic field

PROMAGProject Coordinator2007-2010K.U.Leuven

Plane parallel and perpendicular to electrode

EPD of SOFC

Novel Materials for Silicate-Based Fuel Cells

Processing of Solid Oxide Fuel Cells

- Nanopowder synthesis
- Colloidal processing of half cells
- Sintering of half cells

Field Assisted Sintering Technology (FAST)

Field assisted sintering technology for the densification of nanostructured powders and fabrication of functionally graded materials

- Technology development
- Experimentation
- Thermo-electrical modelling
- Thermo-electrical-mechanical modelling
- Superplastic deformation

Field Assisted Sintering Technology (FAST)

Ceramic and ceramic-metal nanocomposites (cermets) fabricated from nanopowders

Nanostructured aluminium based alloys from rapid solidification or mechanical alloying

Field Assisted Sintering Technology (FAST)

FE-modelling of the temperature distribution during FAST

High temperature equipment

SPS

Equipment Properties:

pulsed electric current: 0 – 8000 A
pulse/pause time combinations:
 0 - 255 ms
force: max. 250 kN
heating rate: up to 1000°C/min
heating cycle duration: 10 -30 min
 (incl. heating-cooling)
 max temperature > 2200°C
 min controllable temperature = 150°C

Materials : Al-alloys, intermetallics, steel, ZnSe, ITO, borides, carbides, nitrides, Cu₃Sn, oxides, electroceramics, BaTiO₃, cermets, cemented carbides, ceramic composites, tungsten, etc.

Electro-conductive ceramic composites

For electrical discharge machining (EDM) and wear applications

http://www.mtm.kuleuven.be/Research/GBOU-IWT/spark/index.html

http://www.moncerat.org

Development of ceramic composites

Electrical discharge machined new composites

Gears

Extrusion die insert

Attritor disc

Lens mould insert

Injection moulding tool

Fine blanking tool

Elastic and internal friction properties of materials

Measuring of resonance frequency and damping

Impulse Excitation Technique (IET)

⇒ Measurement of E, G, v, and Q⁻¹ at RT ⇒ Measurement of E and Q⁻¹ at elevated <u>†%%%Hicable</u> to monoliths, coatings and laminates

Elastic and damping properties of materials

Schematic of an IET-furnace

Elastic and damping properties of materials

Elastic and damping properties of materials

Structural Integrity of Ceramic Multilayers and Coatings"

Selective laser sintering and melting

Direct rapid manufacturing of metallic and ceramic parts

SBO project: DiRaMaP (2008-2012) Project Coordinator: PMA, K.U.Leuven

Solution Deposition Technologies for CIGS and TCO

- Powder-based opposed to vacuum sputtered photovoltaics
- Selenisation studies of Cu(In,Ga)-Selenides
- Assessment of fast selenisation processes
- Rapid annealing processes of transparent conductive oxides (TCO)

Cross-section of Cu(In,Ga)Se, solar cell

SIM project: SoPPoM (2010-2014)

Publications ceramics research group

Ceramics research group

