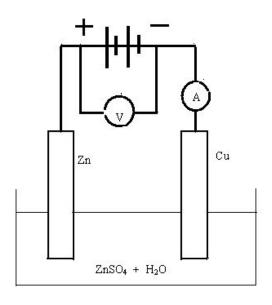
Поляризация электродов

 $\Delta \epsilon_{\rm a}$ - анодная поляризация, смещение потенциала анода в положительную сторону от равновесного значения.

 $\Delta \epsilon_{\rm K}$ - катодная поляризация, смещение потенциала катода в отрицательную сторону от равновесного значения.

$$E = \varepsilon_{\kappa} - \varepsilon_{a} \rightarrow 0$$

Концентрационная поляризация (Замедленная диффузия ионов металла в


растворе, \mathcal{E}_{a} ↑, \mathcal{E}_{K} ↓. Устраняется нагреванием или перемешиванием электролита)

Электрохимическая поляризация

Замедление работы из-за кинетических проблем электродной реакции окисления или восстановления. Такую поляризацию называют электрохимической или перенапряжением (η).

(Форма электрода, состояние поверхности, температура, состав электролита, плотность тока и т.п.)

Электролиз раствора сульфата цинка с растворимым цинковым анодом

(+)
$$Zn - 2e \leftrightarrow Zn^{2+}$$

(-)
$$Zn^{2+} +2e \leftrightarrow Zn \downarrow$$
.

Потенциал разложения

Минимальная разность потенциалов внешнего источника тока, при которой начинается процесс электролиза, называется потенциалом разложения электролита. Процесс начинается, но в результате поляризации разность потенциалов становится больше, и процесс останавливается, необходимо увеличивать разность потенциалов. Результат – перерасход электроэнергии из-за поляризации.

Электролиз расплава

Допустим, в электролизер загружен расплав хлорида никеля, а в качестве анода использован графит, инертный по отношению к окислению электрическим током материал. Такой процесс называют электролизом с нерастворимым (инертным) анодом. На поверхности графита будет окисляться анион хлора, имеющийся в расплаве при диссоциации соли. Катион никеля будет восстанавливаться на катоде:

$$NiCI_2 \leftrightarrow Ni^{2+} + 2CI^-$$

(+) $2CI^- - 2e \leftrightarrow CI_2 \uparrow$
(-) $Ni^{2+} + 2e \leftrightarrow Ni \downarrow$.

Конкуренция электродных реакций при электролизе растворов электролитов

1. Анодные процессы.

1.1 Анод растворимый.

Материал анода M= Mg, AI, Zn, Fe, Mn, Cr, Sn и др.:

(+) M - ne \leftrightarrow Mn⁺.

1.2 Анод инертный (графит, Pt, Ti, Nb)

Все анионы можно разделить на две группы. Анионы кислот типа CI^- , Br^- , I^- , S^{2-} окисляются легко:

(+)
$$2CI^{-}$$
 $-2e \leftrightarrow CI_{2} \uparrow$
(+) $2Br^{-}$ $-2e \leftrightarrow Br_{2}$
(+) S^{2-} $-2e \leftrightarrow S \downarrow$.

Анионы кислородсодержащих кислот

Сульфатный SO_4^{2-} , карбонатный CO_3^{2-} , фосфатный PO_4^{3-} , нитратный NO_3^{-} и др. имеют потенциал окисления больше, чем у воды, поэтому на аноде происходит процесс окисления молекулы воды или гидроксидионов в зависимости от рН:

(+)
$$2H_2O - 4e \leftrightarrow O_2\uparrow + 4H^+$$
 при $pH \le 7$
(+) $4OH^- - 4e \leftrightarrow O_2\uparrow + 2H_2O$ при $pH > 7$.

2. Катодные процессы

На этом электроде конкурируют два процесса восстановления:

(-)
$$M^{n+}$$
 + ne $\leftrightarrow M \downarrow$.

(-)
$$2H^+ + 2e \leftrightarrow H_2\uparrow$$
.

Реакция восстановления водорода имеет сложный механизм и заторможена, то есть заполяризована. Потенциал водорода сильно смещен в отрицательную сторону.

Механизм восстановления ионов водорода

$$2H^+ + 2e \leftrightarrow H_2 \uparrow$$

- Эта, казалось бы, простая реакция протекает медленно, у нее пятистадийный механизм:
- а) диффузия гидратированных ионов водорода к поверхности электрода из объема электролита;
- б) стадия дегидратации $H_3O^+ \to H^+ + H_2O;$
- в) стадия разряда $H^+ + e \rightarrow H$;
- г) стадия рекомбинации (образования молекул)

$$H + H \rightarrow H_2;$$

д) стадия образования пузырьков газообразного водорода, покидающих поверхность катода— $H_2\uparrow$.

Выводы теорий водородного перенапряжения

Вывод теорий замедленного разряда и замедленной рекомбинации по величине перенапряжения совпадает:

$$\eta H_2 = 1.7B.$$

- От величины равновесного (стандартного) потенциала водорода нужно сместиться в отрицательную сторону (процесс катодный) на величину 1,7B
- У всех металлов, расположенных в ряду напряжений ниже алюминия, потенциал оказывается больше, чем у водорода. Такие металлы и восстанавливаются на катоде:

(—)
$$M^{n+}$$
 + ne $\leftrightarrow M \downarrow$ при условии $\mathbf{E}^{o}_{M} > \mathbf{E}^{o}_{AI}$
При условии $\mathbf{E}^{o}_{M} \leq \mathbf{E}^{o}_{AI}$:

(—)
$$2H^{+} + 2e \leftrightarrow H_{2} \uparrow$$
 при pH <7.
(—) $2H_{2}O + 2e \leftrightarrow H_{2} \uparrow + 2OH^{-}$ при pH ≥ 7 .

Электролиз водного раствора CuI_2

Электролизу подвергается водный раствор йодистой меди CuI_2 . Анод инертный (по умолчанию).

Ион йода может окисляться, а ион меди легко восстанавливаться, так как

$$\mathbf{\epsilon}^{o}_{Cu} > \mathbf{\epsilon}^{o}_{AI}$$
.

(+) $2I^{-} - 2e \leftrightarrow I_{2} \downarrow$.

(-) $Cu^{2+} + 2e \leftrightarrow Cu \downarrow$.

Электролиз водного раствора фосфата калия

 $K_3PO_4 + H_2O$, анод инертный

(+)
$$2H_2O - 4e \leftrightarrow O_2\uparrow + 4H^+$$

(-) $2H_2O + 2e \leftrightarrow H_2\uparrow + 2OH^-$.

Электролиз водного раствора бромистоводородной кислоты

$$HBr + H_2O$$
, анод инертный
 (+) $2Br^- - 2e \leftrightarrow Br_2$
 (-) $2H^+ + 2e \leftrightarrow H_2\uparrow$.

Электролиз гидроксида натрия

Раствор NaOH, анод инертный:

(+)
$$4OH^- - 4e \leftrightarrow O_2 \uparrow + 2H_2O$$

(-)
$$2H_2O + 2e \leftrightarrow H_2\uparrow + 2OH^-$$
.

Расплав NaOH:

(+)
$$4OH^{-} - 4e \leftrightarrow O_{2}\uparrow + 2H_{2}O\uparrow$$

(-) $Na^{+} + e \leftrightarrow Na$.

Закон Фарадея

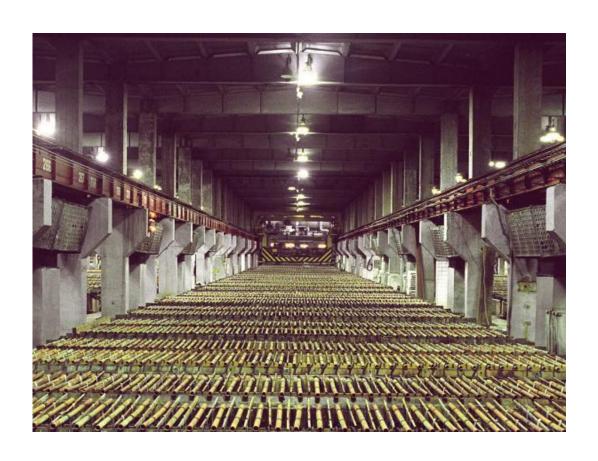
Одинаковые количества электричества выделяют на электродах при электролизе эквивалентные массы различных веществ.

Один Фарадей электричества выделяет один эквивалент любого вещества. 1F = 96500 Кл (A•c) = 26,8 А•час. Для цинка это (65/2) г/моль, алюминия (27/3) г/моль и т.д. Газы принято измерять в виде объема, а не массы. Для водорода эквивалентная масса 1г/моль, который при нормальных условиях занимает объем 11,2л. Для кислорода 8г/моль или 5,6л. Закон Фарадея можно записать в виде:

$$m = m^{3} (I \cdot t/F)$$

 $V = V^{3} (I \cdot t/F),$

где I — ток,A; t — время электролиза, c,u; F — число Фарадея, m — масса продукта, Γ или V — его объем, π .


Применение электролиза

- Цветная металлургия (получение никеля, меди кобальта и др.);
- Получение алюминия;
- Получение фтора;
- Защитные и декоративные металлические покрытия;
- Электрохимическая защита от коррозии.

Мончегорск. Цех электролиза никеля.

Цех электролиза никеля

Получение алюминия

Электролизёр для алюминия

