Принципы защиты от коррозии

• Принцип изоляции поверхности металла.

Защита, основанная на этом принципе, называется пассивной.

- Принцип пассивации поверхности металла (активная защита).
- Принцип катодной электрохимической защиты (протекторная, катодная защита).
- Принцип ингибирования среды.
- Принцип легирования сталей.
- Принцип комбинированной защиты.

Металлические покрытия

• **Анодные покрытия**. **Є** покрытия < **Є** Fe. Такому условию удовлетворяют цинк и кадмий. Пока это покрытие цело, защита железа основана на принципе изоляции. При нарушении целостности цинкового покрытия в место дефекта попадает влага, кислород. Образуется гальваническая пара железо — цинк:

(-)
$$Zn - 2e \rightarrow Zn^{2+}$$
,

(+) O2 + 2H2O + 4e
$$\rightarrow$$
 4OH⁻.

При работе элемента анодом является цинк, коррозии подвергается металл покрытия. Продолжается активная защита железа даже при возникновении дефектов на цинковом покрытии.

Металлические покрытия

• **Катодные покрытия**. **Е** покрытия > **Е** Fe. Покрытие из менее активного металла типа никеля, олова, хрома, меди, серебра, золота и т.п. В этом случае работает только принцип изоляции, активная защита в случае нарушения целостности покрытия невозможна. Противоположная ситуация, например для оловянного покрытия (белая жесть):

(-) Fe - 2e
$$\rightarrow$$
 Fe²⁺,

(+) O2 + 2H2O + 4e
$$\rightarrow$$
 4OH⁻.

При нарушении катодного покрытия скорость основного металла (железа) в месте повреждения будет во много раз больше, чем если бы такого покрытия не было вовсе. Коррозия носит язвенный характер и развивается вплоть до свища.

Методы нанесения металлических покрытий

- Гальваническое нанесение методом электролиза. Из солевых растворов наносят цинк, хром, никель, медь и т.д.

Катод: (—) M^{n+} ne $\rightarrow M \downarrow$

- «горячее» цинкование. Изделие погружается в ванну с расплавленным цинком, T= 420°C.
- **Газотермическое** нанесение (плазменное, электродуговое).
- Термодиффузия.

Термодиффузия

Во вращающуюся трубчатую печь помещают детали, подлежащие оцинкованию. Шихта состоит из цинкового порошка. Печь нагревают до температуры плавления цинка — 420°С и вращают определенное время. Детали перемешиваются с порошком цинка, происходит взаимная диффузия цинка в железо и железа в цинк как при «горячем» цинковании За один час вращения печи образуется покрытие толщиной 30мкм, за два часа — 60мкм и т.д.

Вариант: термохимическая диффузия.

$$NH_4CI \rightarrow NH_3\uparrow + HCI\uparrow$$

 $NH_3 + O_2 \rightarrow N_2 + H_2O;$
 $HCI + FeO \rightarrow FeCI_2 + H_2O.$

Области применения газотермических покрытий

Группа покрытий газотермического нанесения цинка и алюминия по ГОСТ 9.304, в том числе комбинированные покрытия, состоящие из газотермических металлических покрытий и ЛКП следует предусматривать для защиты от коррозии стальных конструкций зданий и сооружений повышенного уровня ответственности по ГОСТ 27751 (Свод правил СП 38.13330.2017 Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85) независимо от агрессивности среды, а также при повышенных требованиях к долговременной защите конструкций от коррозии или отсутствии возможности возобновления защитных покрытий в процессе эксплуатации. Основное назначение – для защиты от коррозии стальных конструкций со сварными, болтовыми или заклепочными соединениями (с нанесением после сварки). В этом отношении они вне конкуренции.

Гальванический цех

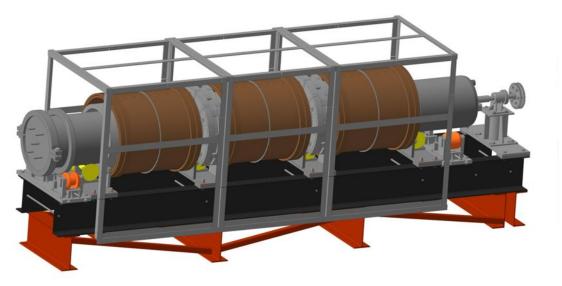
Гальваника

Гальваническая линия

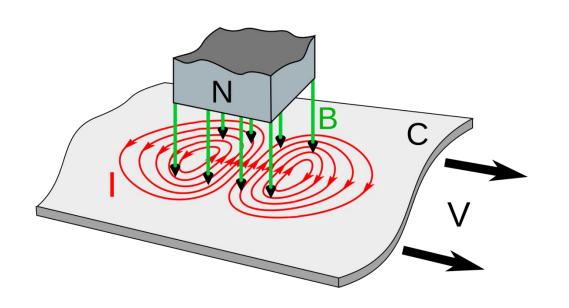
Электродуговое нанесение

Электродуговое нанесение

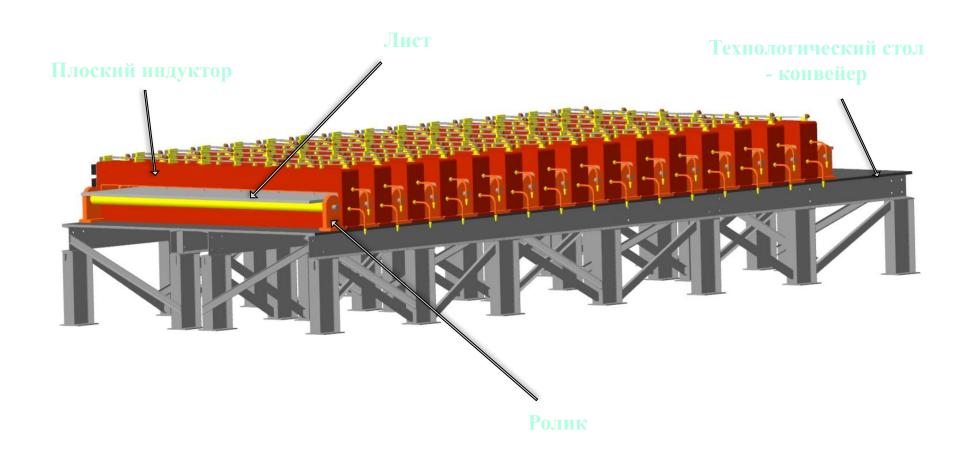
Плазменное нанесение



Лабораторная печь для термодиффузии (загрузка до 100кг деталей)



Промышленная печь для термодиффузии (загрузка до 1000кг деталей)



Возникновение токов Фуко в движущейся в постоянном магнитном поле металлической пластине

- пластина
- скорость движения пластины
 - I токи Фуко
- В магнитная индукция
 - магнитный полюс

Модуль ТДЦЭ для палубных листов

Конверсионные покрытия

Конверсия — преобразование поверхности металла, создание пассивирующего слоя с повышением электродного потенциала.

Оксидирование (воронение стали):

Fe + O₂
$$\rightarrow$$
 Fe₃O₄
NaOH, H₂O, T= 80°C.

Анодирование алюминия:

$$(+) AI \rightarrow AI_2O_3$$

Азотирование стали (обработка в атмосфере аммиака при 600°C:

$$NH_3 \rightarrow N_2 + H_2$$

Fe + $N_2 \rightarrow Fe_2N$, Fe₄N.

Фосфатирование стали

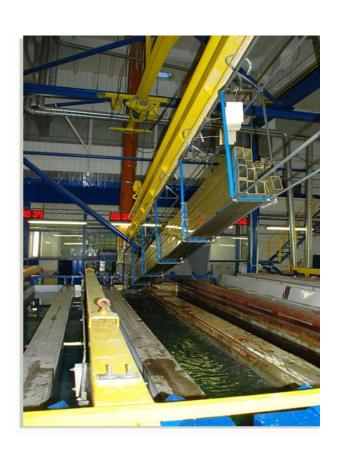
Аморфный слой фосфатов.

а) горячее, $80\text{-}90^{\circ}\text{C}$. Состав «МАЖЕФ»: H3PO4 + Fe(H2PO4)2 + Mn(H2PO4)2. $\text{H3PO4} + \text{Fe} \rightarrow \text{Fe3}(\text{PO4})2 \downarrow + \text{H2}\uparrow$ $\text{H3PO4} + \text{FeO} \rightarrow \text{Fe3}(\text{PO4})2 \downarrow + \text{H2O}$.

б) холодное.

Состав «HOTEX»: H3PO4 + Zn(H2PO4)2 + ингибитор коррозии. Мелкокристаллический слой фосфатов цинка и железа. Принцип работы преобразователей ржавчины.

Вороненая сталь


Анодированный алюминий

Анодированный алюминиевый профиль



Линия анодирования

Азотирование инструментальной стали

Фосфатирование стали

