

История открытия <u>Нарисуйте схему получения фосфора порассказу</u>

Фосфор открыт гамбургским алхимиком Хеннигом **Брандом** в 1669 году, сфокусировался на опытах с человеческой мочой, из-за ее золотистого цвета. Способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятный запах, а затем кипятилась до клейкого состояния. Паста нагревалась до высоких

После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis. Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

«Алхимик, открывающий фосфор» картина П. Райта

- Что изначально искал Бранд?
- Почему со времен античности до 1669 года не открывались элементы?
- Какие методы разделения веществ применил Бранд для выделения фосфора из мочи?

Характеристика элемента

Неметалл, элемент 5 A – подгруппы, III

Валентность	Степень окисления
?	?
?	?
	?

Признак	Азот	Фосфор
<u>Сходства</u>		
Число электронов на внешнем уровне		
Высшая степень окисления		
Низшая степень окисления		
<u>Различия</u>		
Число энергенических уровней		
Промежуточные степени окисления		

Признак	Азот	Фосфор
<u>Сходства</u>		
Число электронов на внешнем уровне	5	5
Высшая степень окисления	+5	+5
Низшая степень окисления	-3	-3
<u>Различия</u>		
Число энергенических уровней		
Промежуточные степени окисления	+1, +2, +3, +4, +5	+3, +5

- Сравните свойства простого вещества фосфора с серой и азотом
- Сравните кислотно-основные свойства летучего водородного соединения и высшего оксиды/гидроксида фосфора с соответствующими соединениями серы и азота

Характеристика простого

Фосфор обладает аллотропией:

Белый Красный Металлический

Черный

Разомнем мозги:

По данным таблицы определите:

- 1. Какая модификация фосфора больше напоминает по физическим свойствам метал?
- 2. А какая наиболее опасна для человека?

Физические свойства

Характеристика вещества	Белый фосфор	Красный фосфор	Черный фосфор
1)Физическое состояние	Кристаллическое вещество	Порошкообразное вещество	Кристаллическое вещество
2)Твёрдость	Небольшая - можно резать ножом (под водой)		Выше чем у белого Р
3) Цвет	Белый	Красный	Черный
4)Запах	Чесночный	Не обладает	Не обладает
5)Плотность (в г/см3)	1,8	2,3	2.7
6)Растворимость в воде	Не растворяется	Не растворяется	Не растворяется
7)Температура плавления (в ºС)	44	260	280
8)Свечение	В темноте светится	Не светится	Не светится
9)Действие на организм	Сильный яд	Не ядовит	Не ядовит

Нахождение в природе:

В природе существует практически только в виде фосфатов, например фосфоритов

Получение фосфора:

 Фосфор (белый) получают в промышленности, например, при прокаливании апатита с коксом и песком:

Фосфат кальция + кокс + кварцевый песок = фосфор + угарный газ + силикат кальция

 $Ca_3(PO_4)_2 + C + SiO_2 = P + CO + CaSiO_3$ (расставьте коэффициенты методом ЭБ)

Химические свойства:

Как окислитель:	Как восстановитель
Реагирует с	Реагирует с
металлами:	неметаллами:
$P + Na = Na_3P$	$4P + 5O_2 = 2P_2O_5$ Оксид
$P + Ca = Ca_3P_2$	фосфора (V)
Полученные соли	$2P + 5Cl_2 = 2PCl_5$ хлорид
называются фосфиды	фосфора (V)
	$4P + 3O_{2} (Heд) = 2P_{2}O_{3}$
	Оксид фосфора (III)
	2P + 3S = P ₂ S ₃ Сульфид
	фосфора (III)

Химические свойства:

Реагирует со сложными сильными окислителями с образованием соединений фосфора +5:

$$P + HNO_3 + H_2O = H_3PO_4 + NO$$

 $P + H_2SO_4 = SO_2 + H_3PO_4 + H_2O$
 $P + KCIO_3 = KCI + P_2O_5$

Какая из реакций соответствует поджиганию спички? Насколько концентрирована азотная кислота в

$$3P + 5HNO_3 + P2H_2^{*}U^{*}3H_3PO_4 + 5NO_5$$

 $2P + 5H_2SO_4 = 5SO_2 + 2H_3PO_4 + 2H_2O_5$
 $6P + 5KCIO_3 = 5KCI + 3P_2O_5$

C . o.	Азот	Фосфор
-3	Летучее водородное соединение NH ₃ – аммиак Li ₃ N – нитрид лития	PH ₃ - фосфин Mg ₃ N ₂ - фосфид магния
+1, +2 +3 +4	N ₂ O, NO N ₂ O ₃ , HNO ₂ , KNO ₂ NO ₂	- P ₂ O ₃ , H ₃ PO ₃ K ₂ HPO ₃
+5	N ₂ O ₅ , HNO ₃ , NaNO ₃	P ₂ O _{5,} H ₃ PO _{4,} Na ₃ PO ₄

Фосфин

- Газ с резким запахом, похожим на рыбу
- Очень ядовит, вызывает ожоги дыхательных путей и поражение центральной нервной системы
- Получается при гидролизе фосфидов:

$$Ca_3P_2 + H_2O = Ca(OH)_2 + PH_3$$

• Очень сильный восстановитель

$$2PH_3 + 4O_2 = P_2O_5 + 3H_2O$$

• Создает эффект «блуждающих огней»

Фосфорная кислота.

Бесцветные гигроскопичные кристаллы, хорошо растворима в воде и других полярных растворителях.

Концентрированный раствор – бесцветная сиропообразная жидкость без запаха.

Получить ее можно:

- 1. Из оксида фосфора (V)
- 2. Из <u>ортофосфатов</u> (под действием серной кислоты)
- 3. Из других соединений, например <u>хлорида</u> фосфора (V)

(напишите уравнения реакций, для РИО напишите полное и сокращенное ионные уравнения)

$$H_3PO_4 \stackrel{K_1}{\rightleftharpoons} H^+ + H_2PO_4^-,$$
 $H_2PO_4^- \stackrel{K_2}{\rightleftharpoons} H^+ + HPO_4^{2-},$
 $HPO_4^{2-} \stackrel{K_3}{\rightleftharpoons} H^+ + PO_4^{3-}.$

Какая ступень протекает лучше? Почему?

1. Из оксида фосфора (V)

$$P_2O_5 + 3H_2O = 2H_3PO_4$$

2. Из солей (под действием серной кислоты)

$$Ca_3(PO_4)_2 + 3H_2SO_4 = 3CaSO_4 + 2H_3PO_4$$

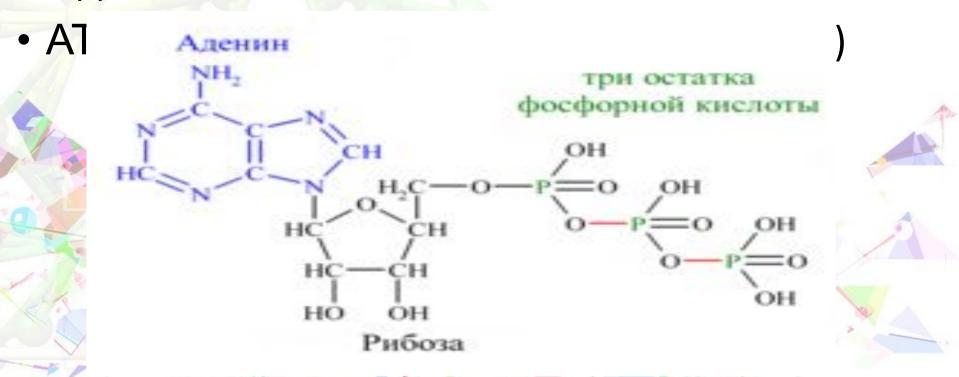
3. Из других соединений, например хлорида фосфора (V)

$$PCI_5 + 4H_2O = H_3PO_4 + 5HCI$$

- Как и все слабые кислоты реагирует с (чем?)
- 1. Основаниями $(NaOH + H_3PO_4 =)$
- 2. Основными оксидами $(K_2O + H_3PO_4 =)$
- 3. Металлами левее водорода в ряду активности

$$(Zn + H_3PO_4 =)$$

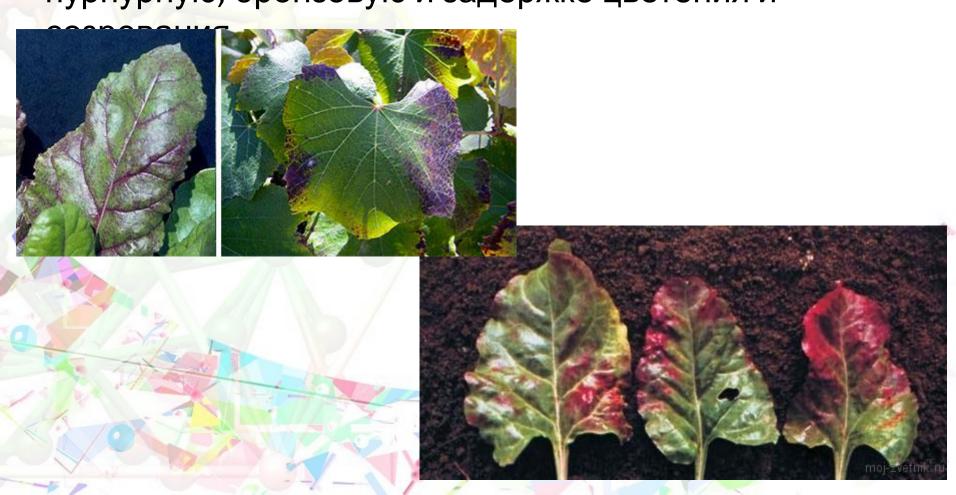
- Образует 3 вида солей:
- 1. Фосфаты Na_3PO_4 $Ca_3(PO_4)_2$


THE LEDOCHOCK POST POPULA

- 2. Гидрофосфаты Na2HPO4 СаНРО4
- 3. Дигидрофосфаты NaH₂PO₄, Ca(H₂PO₄)₂ Растворимость увеличивается в этом ряду, например фосфат кальция нерастворим, а

Биологическая роль:

Фосфор является органогеном. В неорганической форме входит в состав костей.

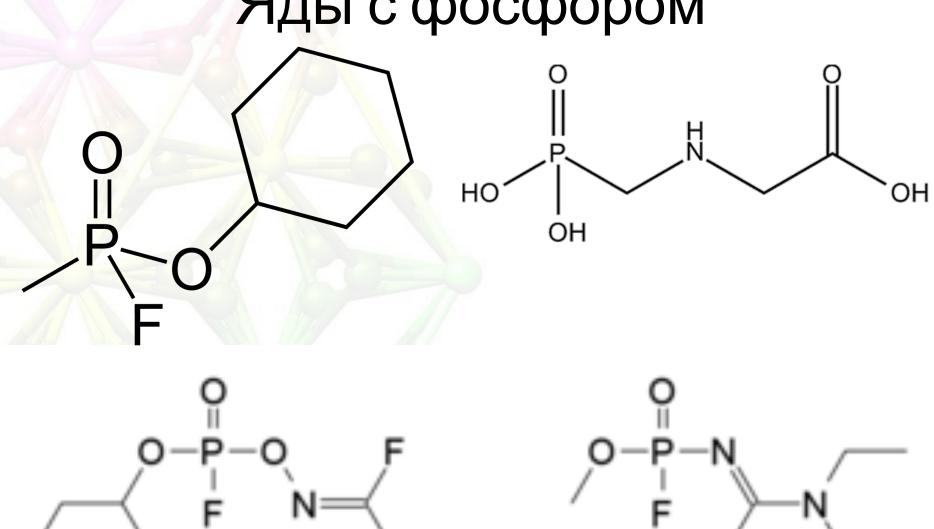

В органической в состав многих важных соединений:

• ДНК, РНК Фосфатная группа Дезоксирибоза Азотистые основания: аденин (А), гуанин (G), цитовин (С), тимин (Т) Водородная СВЯЗЬ

применение в сельском

• Фосфор способствует накоплению полезных веществ растением и повышает его выносливость. Фосфорное голодание проявляется в изменении окраски листьев на пурпурную, бронзовую и задержке цветения и

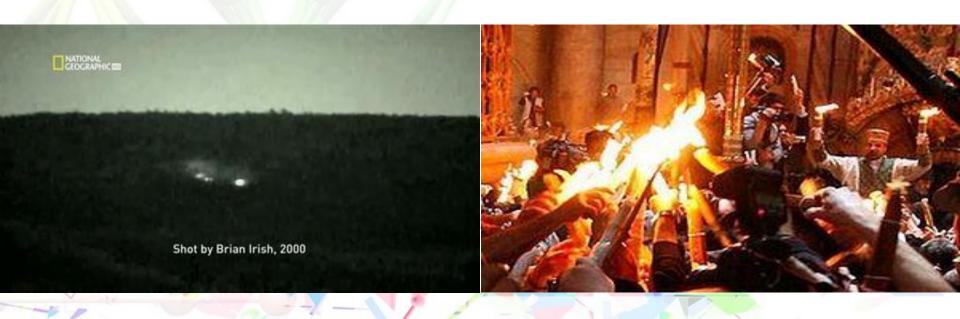
Фосфорсодержащие удобрения


• **Аммофос** — сложное фосфорно-азотное удобрение содержит азот и фосфор.

- **Нитроаммофос** азотно-фосфорное удобрение, которое содержит водорастворимый фосфор.
- Нитрофос двойное азотно-фосфорное удобрение.

- **Диаммофос** азотно-фосфорное удобрение, широко применяемое для овощных культур.
- **Нитроаммофоска** сложное азотно-фосфорно-калийное удобрение.

Яды с фосфором


Химия в литературе:

А. Конан Дойл описал собаку, морда которой была в белом фосфоре, выглядела она так:

В сериале «Breaking Bad» главный герой залил водои прокаленную смесь йода с фосфором, в результате выделился газ, отравивший мексиканцев (симптомы: удушье, поражение ЦНС)

Какая из ситуаций реальн с точки зрения химии? Объясните ответ.

- Известно, что бактерии гниения разлагают трупы с выделением соединений фосфора. Используя эти данные, объясните «призраков» на кладбищах.
- Известно, что белый фосфор растворим в сероводороде и в этом состоянии не самовозгорается. Однако сероводород быстро испаряется. Используя эти данные, предположите объяснение «снисхождения благодатного огня».

Спасибо за внимание!

