

Лихачев Владислав Александрович, к.х.н., доцент

Методы исследования коррозии

- 1. Контроль качества заводской продукции;
- 2. Проверка применяемых средств защиты (поиск новых);
- 3. Сравнение вариантов защиты;
- 4. Разработка новых материалов;
- 5. Выяснение причин коррозии.

Классификация методов исследования коррозии

- 1. Лабораторные;
- 2. Внелабораторные;
- 3. Эксплуатационные.
- 1. Лабораторные методы исследования коррозии это методы исследования на образцах в искусственно смоделированных коррозионных средах.

Эти методы применяются наиболее часто. Они менее длительны, более количественно воспроизводимы и являются первым этапом всех коррозионных исследований. При проведении лабораторных методов исследования могут применятся любые показатели коррозии. Они многовариантны.

Классификация методов исследования коррозии

- 2. Внелабораторные методы исследования это исследование коррозии в реальных условиях на образцах. Например: исследование защитной способности покрытий на стендах в условиях атмосферной коррозии; исследование скорости коррозии в реакторах на образцах. Эти методы могут проводиться с использованием количественных показателей коррозии (весовой, глубинный), дают более реальную картину коррозии, но они более длительны во времени.
- 3. Эксплуатационные исследования на реальных установках (или их моделях) в реальной коррозионной среде.

Проводятся часто с использованием только качественных показателей коррозии, являются завершительным этапом исследований коррозии, они наиболее достоверны, но очень длительны и дороги. При их проведении проверяется 1-2 лучших варианта защиты.

Пабораторные методы исследования коррозии

Лабораторные методы исследования разделяются на две группы:

- 1. Исследование продуктов коррозии:
- **визуальная оценка продуктов коррозии** с помощью различных микроскопов;
- весовой для оценки веса продуктов коррозии:
- **толщина** микрометр, с помощью шлифов на микроскопе.
- **состав продуктов** спектральные, химические методы анализа
- структура рентгенографические электронографические методы
- **диффузия в продуктах коррозии** метод радиоактивных изотопов

коррозии.

Пабораторные методы исследования коррозии


- 2. Испытания, связанные с оценкой скорости коррозии.
- Массовый (весовой) –определение привеса или убыли Me.
- объемный –определение объема выделившегося или поглощенного газа.
- глубинный оценка глубины коррозионных поражений.
- определение тока коррозии электрохимические методы исследования коррозии.

Способ исследования определяет вид определяемого показателя коррозии, остальные рассчитываются Показатели применяются для равномерной и общей

Выбор показателей коррозии

Показатели коррозии, применяемые нами относятся к общей и равномерной коррозии. В жизни чаще всего коррозия идет неравномерно во времени и тогда,

показатели коррозии, например массовый показатель будет зависеть от времени испытаний.

ГОСТ 9.908 – 85 «Металлы и сплавы, методы определения показателей коррозии и коррозионной стойкости» устанавливает следующие показатели коррозии.

УНИВЕРСИТЕТ

Показатели коррозии

Виды коррозии	Основные показатели коррозии		
	Коррозионный эффект	Скоростной показатель коррозии	Показатель коррозионной стойкости
Сплошная	Глубина проникновения коррозии,	Скорость убыли в массе, Линейная скорость коррозии	Время до уменьшения массы на допустимую величину
Коррозионное растрескивание	Глубина трещины, Снижение механических свойств	Скорость роста трещины	Время до появления трещины, время до разрыва образца

Образцы для коррозионных исследований

К образцам применяемым в лабораторных и внелабораторных методах исследований предъявляется целый ряд требований.

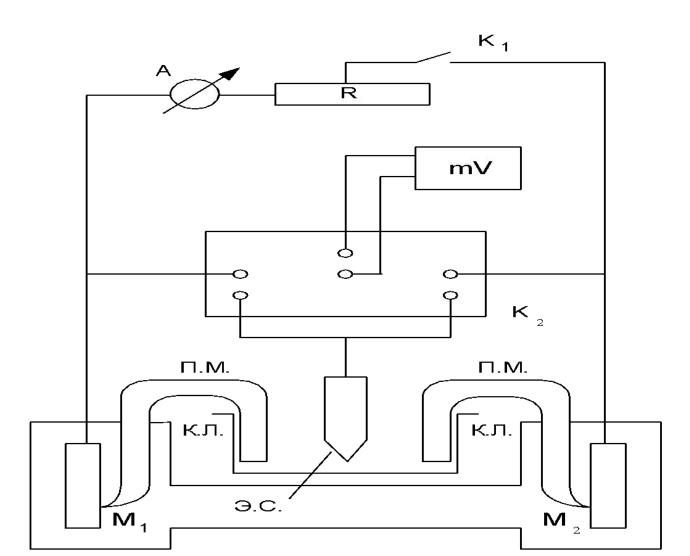
- Образцы должны быть одинаково изготовлены и иметь одинаковую шероховатость поверхности;
- Поверхность образцов должны быть чистой и с нее должны быть удалены все загрязнения (жировые и оксидные);
- Подготовлены всех образцов должна быть одинакова;
- Образцы должны быть, надежно промаркированы.

Так как коррозия зависит от многих факторов, коррозионные испытания часто проверяются, как сравнительные.

Методы исследования защитных покрытий.

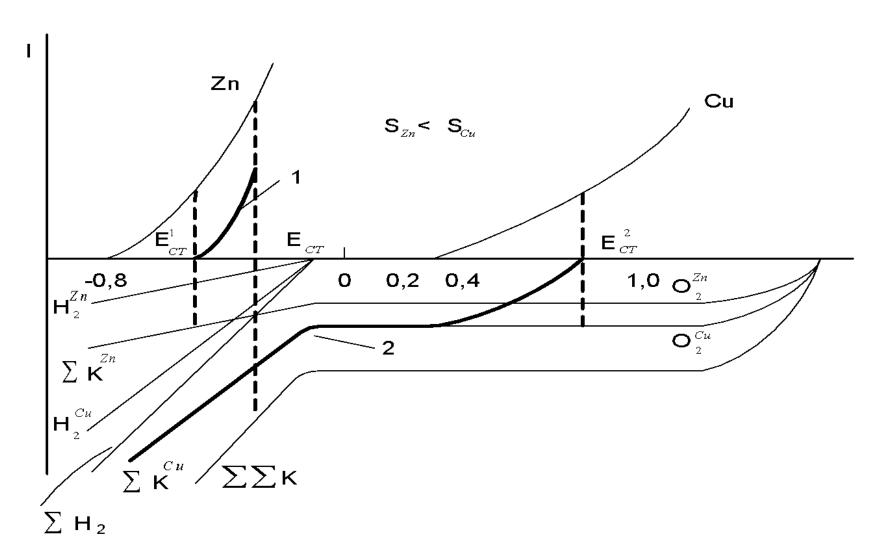
- Гост 9.308-85. Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний.
- Гост дает 9 методов испытаний:
- 1. При повышенных значениях относительной влажности воздуха и температуры без конденсации влаги;
- 2. --=-- с периодической конденсацией влаги;
- 3. --=-- с воздействием сернистого газа;
- 4. --=-- с периодической конденсацией влаги и с воздействием сернистого газа
- 5. В атмосфере солевого тумана;
- 6. При переменном погружении в электролит и т.д. Оценка показателей коррозии по **ГОСТ 9.908 – 85.**

Методы исследования коррозии (Лабораторные работы)

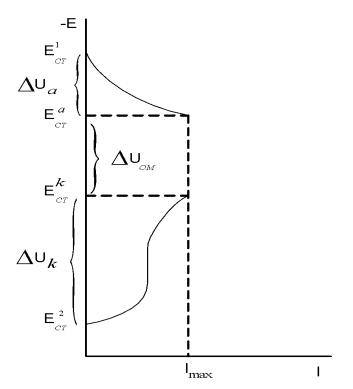

 Весовой и объемный методы исследования коррозии (№1, №4)

Химическая коррозия: используются только два показателя коррозии – весовой и глубинный, электрохимическая коррозия используются все показатели.

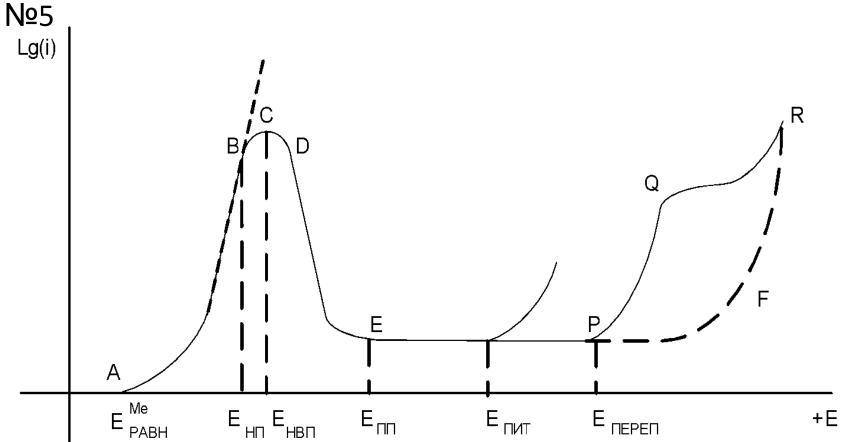
- Измерение потенциала коррозии и анализ коррозионной ситуации; №2
- Исследование контактной коррозии (исследование коррозии на модели микроэлемента);



Установка для исследования контактной коррозии


Коррозия двух металлов в контакте под действием двух окислителей

Исследование контактной коррозии (работа №3)


Коррозионная диаграмма Эванса, получающаяся при исследовании контактной коррозии.

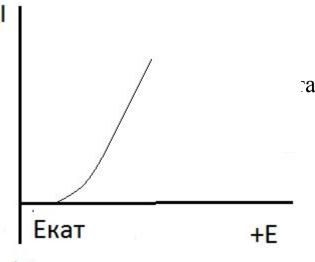
Где I_{max}- максимальный ток защиты

- Снятие поляризационных кривых;
 - 1. Влияние хлор –иона на кривую с пассивацмей; Работа

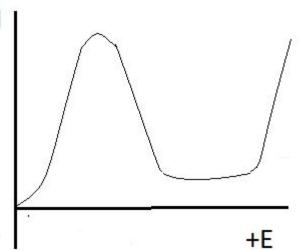
Электрохимические методы исследования коррозии

2. Исследование коррозии с помощью коррозиметра (метод поляризационного сопротивления);

- 3. Метод экстраполяции.
- 4. Оценка склонности сталей к общей и локальной коррозии по характеру реальных поляризационных кривых.
- 5. Исследование питтинговой коррозии.

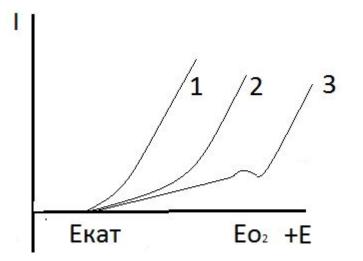


ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ



Реальные поляризационные кривые

Характер реальной поляризационной кривой дает информацию о виде (общая, локальная) коррозии конкретного металла в конкретной коррозионной среде.

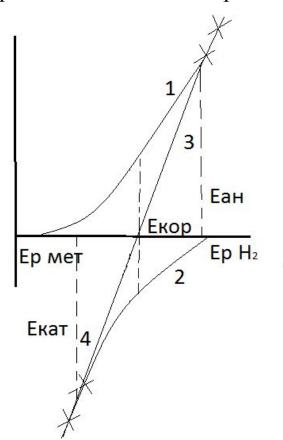

Если анодный ток сразу и быстро возрастает, тает, то металл в данной среде достаточно активен и подвергается общей коррозии.

Данный металл может быть и активным, и пассивным (все зависит от условий эксплуатации).


Лекция 8.1

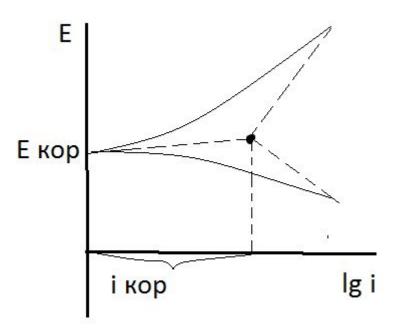
Такой ход поляризационной кривой, говорит о том, что металл при потенциале $E_{\text{кор}}$ пассивен, но склонен к локальным формам коррозии

3 – наиболее устойчивый (Кривые исправить)



Говорит о том, что металл пассивен в данной коррозионной среде (устойчив).

Модель микроэлемента позволяет определить ток защиты и ток контактной пары, степень замедленности.


При исследовании водородной коррозии используют метод экстраполяции.

- 1 теоретическая или идеальная анодная поляризационная кривая
- 2 теоретическая или идеальная катодная поляризационная кривая
- 3 реальная анодная кривая
- 4 реальная катодная кривая Поправ

Появился целый ряд коррозиметров, в которые заложен метод поляризационного сопротивления. Подправить график

