
ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ КЛАССИФИКАЦИЯ

С давних времен возникло естественное разделение всех веществ на неорганические и органические, т.е. получаемые из живых организмов – растений, животных.

Позже это понятие расширилось, и в настоящее время к органическим веществам относят и такие, которые не имеют никого отношения к живым организмам, например, пластмассы.

Синтезированы вещества, которых нет вообще в природе, они получены искусственно.

Раньше природные тела подразделялись растительные минеральные, на животные. А.Лавуазье 1789 г. объединил вещества животного И растительного происхождения. В начале Берцелиус применил для них выражение «органические», чтобы отметить, что они – продукты, вырабатываемые организмом животных и растений. Между веществами органическими И неорганическими лежала глубокая пропасть.

Химики умели получать неорганические лаборатории, вещества исходя простых тел; но это не удавалось для веществ органических. Поэтому считали, последние могут вырабатываться только живым организмом при помощи присущей ему таинственной «жизненной силы». Это учение о «жизненной силе» (виталистическое учение (лат. Vita -Жизнь), было ошибочным, заставляло верить в наличие каких - то нематериальных сверхъестественных сил.

- 1845 год. Кольбе синтезирует в несколько стадий уксусную кислоту, используя в качестве исходных неорганические вещества: древесный уголь, водород, кислород, серу и хлор.
- 1854 год. Бертло синтезирует жироподобное вещество.
- 1861 год. Бутлеров, действуя известковой водой на параформальдегид (полимер муравьиного альдегида), осуществил синтез "метиленитана" - вещества, относящегося к классу сахаров.
- 1862 год. Бертло, пропуская водород между угольными электродами, получает ацетилен.

Эти эксперименты подтверждали, что органические вещества имеют ту же природу, что и все простые вещества, и никакой жизненной силы для их образования не требуется.

Что общего в составе органических веществ?

Органические вещества

- CH₄
- **■** C₂H₅OH
- $\mathbf{C}_{2}\mathbf{H}_{2}$
- $\mathbf{C}_{6}\mathbf{H}_{12}\mathbf{O}_{6}$
- $C_6H_5NH_2$
- CH₃COOH

Неорганические вещества

- H₂
- Ca(OH)₂
- $-H_2CO_3$
- CO₂
- NaCl
- Fe

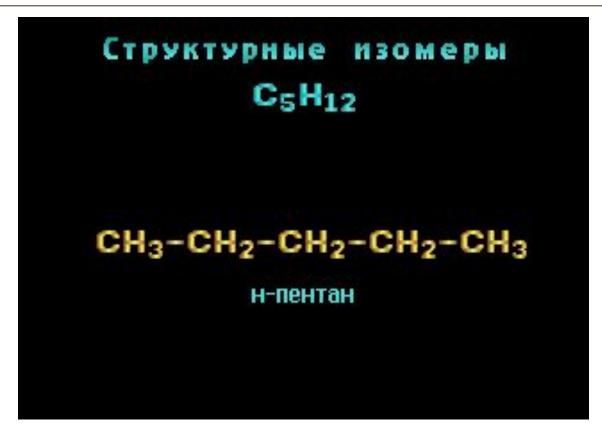
Рис. 4. Изделия и материалы, полученные на основе синтетических органических соединений: 1 — пластмассы; 2 — лекарственные средства; 3 — моющие средства; 4 — синтетические волокна и ткани; 5 — краски, эмали и клеи; 6 — средства для борьбы с насекомыми; 7 — удобрения; 8 — синтетические каучуки

1) Многочисленность органических веществ

Органические вещества - более 25 млн.

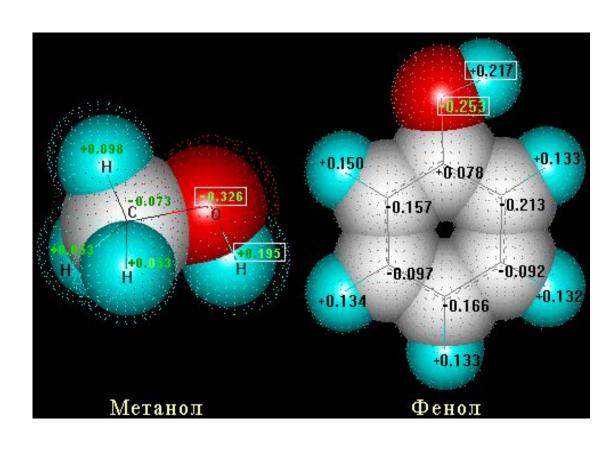
Неорганические вещества - около 600 тыс.

2) Органические вещества горючи


3) Обугливаются при нагревании

4) Большинство органических веществ не растворимо в воде

Вещества, имеющие одинаковый состав молекул, но разное строение и свойства называются изомерами.



5) Существование изомеров

Главный критерий всегда остаётся – наличие в соединениях хотя бы одного углеродного атома.

Основной элемент в органических соединениях – это углерод и водород.

Примеры органических веществ:

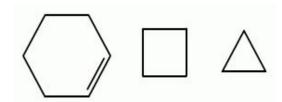
- уксусная кислота СН3-СООН,
- этиловый спирт СНзСН2ОН,
- caxapo3a C12H22O11,
- глюкоза С6Н12О6,
- ацетилен НС=СН,
- ацетон

Записываем признаки органических веществ:

- 1. Содержат углерод.
- 2. Горят и (или) разлагаются с образованием углеродсодержащих продуктов.
- 3. Связи в молекулах органических веществ ковалентные.
- В 2013 году зарегистрировано 20-миллионное органическое вещество.

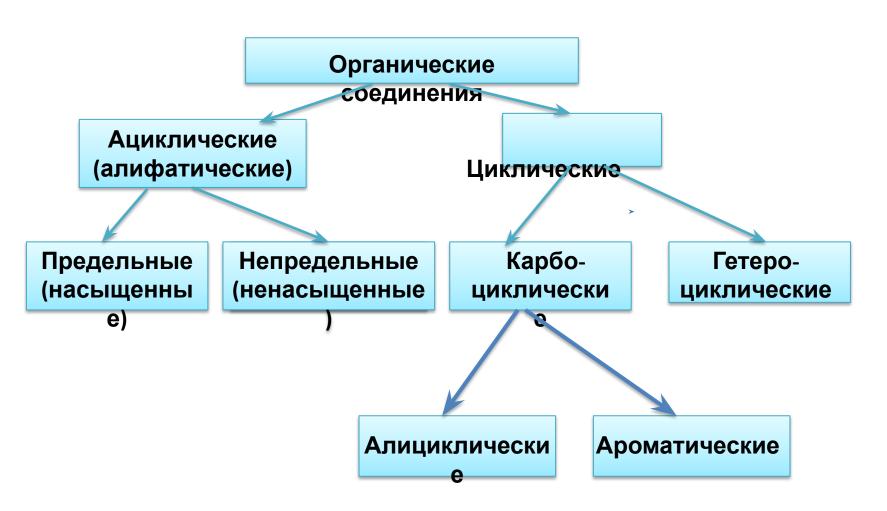
Органическая химия – химия углеводородов и их функциональных производных.

органические вещества


углеводороды

функциональные производные углеводородов

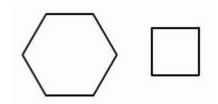
Способы классификации


• По характеру углеродного скелета

$$-C-C-C-C-$$

• По виду функциональной группы

По характеру углеродного скелета



По характеру углеродного скелета

• Ациклические – соединения с открытой, незамкнутой цепью углеродного скелета

- C - C - C - C -

• Циклические – соединения с замкнутой цепью атомов углерода

Ациклические

(или алифатические) соединения - это

соединения с открытой незамкнутой цепью углеродных атомов, которая может быть как прямой, так и разветвленной

 Прямая цепь углеродных атомов

$$-C-C-C-$$

$$-C-C=C-$$

• Разветвленная цепь атомов углерода

Ациклические соединения

предельные

н-Пентан

$$Br$$
 CH_3
 $-CH$
 $-CH_2$
 $-CH_3$

2-Бромбутан

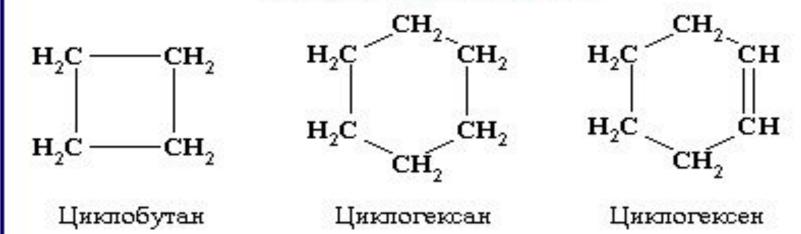
непредельные

$$CH_3$$
 $CH_2=C-CH=CH_2$

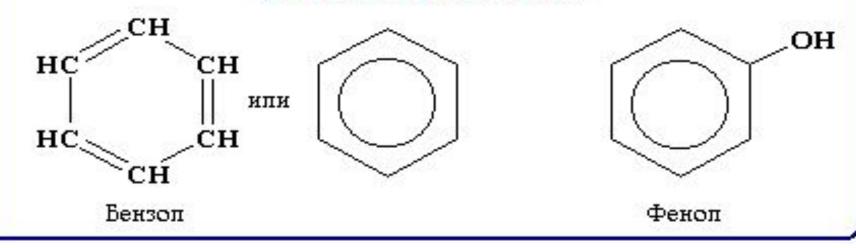
Изопрен

$$HC \equiv CH$$

Ацетипен


Циклические соединения -

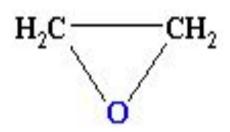
В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

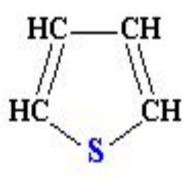

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

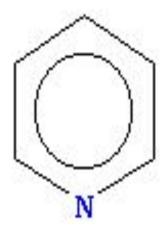
Карбоциклические соединения

алициклические

ароматические




Гетероциклические соединения


содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов

(от греч. *heteros* - другой, иной) - кислород, азот, серу и др.

Гетероциклические соединения

Этипеноксид (эпоксид)

Тиофен

Пиридин

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются *углеводородами*. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных **групп**, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на <u>классы</u>.

Классы органических соединений

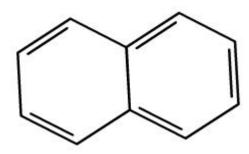
Функциональ- ная группа	Название группы	Классы соединений	Общая формула	Пример
-ОН	Гидроксип	Спирты	R-OH	С₂Н₅ОН этиповый спирт
		Фенопы	KOH	⊙-○н фенол
>c=o	Карбонип	Альдегиды	R H>C=O	СН ₃ СНО уксусный альдегид
		Кетоны	R>C=O	CH ₃ COCH ₃ ацетон
-C _{NO} H	Карбоксип	Карбоновые киспоты	R-C ^{¢O} OH	СН ₃ СООН уксусная киспота
-NO ₂	Нитрогруппа	Нитро- ∞единения	R-NO2	CH ₃ NO ₂ нитрометан
-NH ₂	Аминогруппа	Амины	$R-NH_2$	⊘-мн ₂ анилин
-F, -Cl, -Br, -I (Hal)	Фтор, жпор, бром, иод (галоген)	Галогено- производные	R-Hal	СН ₃ С1 хпористый метип

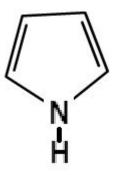
Примечание: к функциональным группам иногда относят двойную и тройную связи.

В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп. Например:

HO-CH2-CH2-OH (этиленгликоль); **NH2-CH2-COOH** (аминокислота *глицин*). Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.

Задание: определить к какому классу относится данное соединение


CH3=CH2-CH3


CH3 - CH3

CH3-CH2-CH2-CH2-OH

CH2=CH-C=C-CH2-CH3

Классификация по функциональным группам

Функциональная группа – это группа атомов, определяющая химические свойства соединения и принадлежность его к определенному классу органических соединений

Основные классы органических соединений

Название класса соединения	Функциональная группа или наличие кратной связи	Пример соединения	Название соединения
Алканы СпН2п+2	Все связи одинарные С – С	CH ₃ CH ₃	Этан
Алкены СпН2п	Одна двойная связь с = с	CH ₂ = CH ₂	Этен (Этилен)
Алкины СпН2п-2	Одна тройная связь с ≡ С	CH ≡ CH	Этин (Ацетилен)
Алкадиены СпН2п-2	Две двойные связи	CH ₂ = CH - CH = CH ₂	Бутадиен-1,3

Основные классы органических соединений

Название класса соединения	Функциональная группа или наличие кратной связи	Пример соединения	Название соединения
Спирты	Гидроксильная -ОН	CH3CH2-OH	Этанол
Простые эфиры	Оксигруппа -0 -	CH3CH2—O -CH3CH2	Диэтиловый эфир, этоксиэтан
Альдегиды	Карбонильная —С—Н 	CH3−C H	Уксусный альдегид, этаналь
Кетоны	Карбонильная	CH3−C −CH3 O	Ацетон, пропанон
Карбоновые кислоты	Карбоксиль ная ОН	CH₃ −C OH	Уксусная кислота, этановая кислота
Сложные эфиры	Сложно-эфирная —С—О—	—CH3 —C″ O — CH3	Метиловый эфир уксусной